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Abstract

Evidence from experiments, surveys, and the field has uncovered both underreaction and over-
reaction to new information. We provide new experimental evidence on the underlying mech-
anisms of under- and overreaction by comparing how people make inferences and revise fore-
casts in the same information environment. Participants underreact to signals when inferring
about underlying states, but overreact to the same signals when revising forecasts about fu-
ture outcomes—a phenomenon we term “the inference-forecast gap.” We show that this gap
is largely driven by different simplifying heuristics used in the two tasks. Additional treat-
ments suggest that the choice of heuristics is affected by the similarity between statistics in the

information environment and the statistic elicited by the belief-updating problem.
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1 Introduction

When new information arrives, rational agents should update their beliefs according to Bayes’
rule. Empirical research, however, has uncovered many instances in which agents’ reactions to
information deviate from Bayes’ rule. One recurring theme in the study of belief updating is that
the direction of belief-updating biases appears to vary from setting to setting. For example, one
literature shows, in both the field and the lab, that individuals tend to overreact to recent news
when asked to make forecasts (e.g., Hey, 1994; (Greenwood and Shleifer, 2014} |Gennaioli et al.,
2016; Frydman and Navel 2017; Conlon et al., 2018; Bordalo et al., 2020; Afrouzi et al., [2023)).
The concept of overreaction, in turn, has been used to explain anomalies such as excess volatility in
financial markets and boom-bust cycles in the macroeconomy (e.g., Barberis et al.,|2015; Bordalo
et al., 2021; Maxted, [2024). However, another experimental literature shows, rather robustly, that
when asked to make inferences about underlying states, participants typically underreact to realized
signals (Benjamin, 2019). The notion of underreaction has been similarly cited to account for facts
such as post-earnings announcement drifts in financial markets and households’ sluggish responses
to macroeconomic conditions (Barberis et al. [1998; |[Coibion and Gorodnichenko, [2015)). Indeed,
both overreaction and underreaction are key concepts in economic analysis and have spurred the
development of theories tackling important puzzles in finance and macroeconomics. However, so
far we still know little about what makes people overreact in some environments but underreact in
others (Benjamin, 2019).

In this paper, by running a series of online experiments, we propose one key condition that
mediates under- and overreaction to new information. The experiment is motivated by an apparent
tension between the two aforementioned literatures that directly test Bayesian updating using re-
ported beliefs. While this tension could be attributed to differences in contexts or data-generating
processes (DGPs), we propose an alternative, unexplored explanation: belief updating differs be-
tween an inference problem and a forecast-revision problem. The differences between the two
problems are illustrated in Figure(ll Loosely, an inference problem is one where an agent observes
signals and learns about the underlying state that determines the distribution of signals. By con-
trast, a forecast-revision problem is one where an agent also observes signals but instead update
beliefs about future outcomes whose distributions also depend on the underlying state.

In rational models and most behavioral ones, the forecast-revision problem is closely tied to the
inference problem: inference about the underlying state often serves as the first step or the primary
input to revising forecasts about future outcomes. However, we uncover a disconnect between the
two problems: when participants perform both types of updating tasks, they underreact to signals
when making inferences but overreact when revising forecasts. We run additional treatments to

study the underlying mechanism driving this difference, and we discuss the potential connections
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Figure 1: Inference problem (left) and forecast-revision problem (right)

Notes: In an inference problem, people observe a signal and then update their beliefs about the underlying states. In a
forecast-revision problem, people revise their forecasts about outcomes in response to a realized signal.

of this result to non-experimental settings.

Our baseline treatment follows the “bookbag-and-poker-chip” paradigm in experimental re-
search but frames the relevant variables in economic terms[] In each round of the experiment,
there is a “firm” with a fixed state which is either good or bad. The firm generates signals, framed
as its monthly stock price growth, and the signals are informative of the state; good firms, on av-
erage, have a higher growth in stock price than bad firms. Participants do not know the true state
but are given the full DGP, including the prior distribution over the two states and the distributions
of signals conditional on each state. In each month, the signal distribution is independent and
identically distributed (i.i.d.) normal, with a mean of 100 if the state is good and O if it is bad.

The key to our design is to compare belief updating about underlying states and about future
outcomes in the same information environment. There are two main parts in the baseline treat-
ment: Inference and Forecast Revision. In Inference, participants observe one realized signal and
report their updated beliefs about the states—the likelihoods of the firm being good and being bad.
In Forecast Revision, participants also observe one realized signal, but instead report their updated
expectations about the next signal—the expected stock price growth next month. In our environ-
ment, these two types of beliefs are closely linked: if one believes that the firm is good with a
p% chance, then by the Law of Iterated Expectations (LolE), the expectation about the next signal
should be p% x 100 + (1 — p%) x 0 = p. This simple relationship ensures that, for participants
who understand this link, the two problems involve a similar level of computational complexity.

Despite the straightforward connection between Inference and Forecast Revision, participants’
behaviors and biases in the two tasks are qualitatively different. In Inference, 61% of the answers
underreact relative to the Bayesian benchmark while 24% overreact, replicating the stylized fact

of underreaction in the bookbag-and-poker-chip literature. By contrast, in Forecast Revision, 40%

'In a typical experiment under this paradigm, there is a bookbag that contains poker chips of several colors. Par-
ticipants do not know the bag’s color composition, but are given the prior distribution of the composition. A random
chip is then drawn from the bag and, upon observing its color, participants are asked to report their posterior beliefs
about the bag’s color composition.



of the answers underreact while 54% overreact. Similarly, when belief updates are measured
using the difference between posterior and prior beliefs, the average magnitude of belief updates is
substantially larger for Forecast Revision than for Inference. We refer to this discrepancy in belief
updating as the “inference-forecast gap.” This gap is robust across subsamples, across rounds,
and under alternative framings of the signal and the outcome. Moreover, the gap persists in two
additional treatments: one in which the signal follows a binary distribution and one in which the
outcome is different from the signal and completely determined by the state. These treatments not
only demonstrate that the gap is robust to alternative DGPs, but also help rule out explanations
based on, for example, misperceptions of signal autocorrelation and related phenomena such as
the hot-hand bias.

After documenting the inference-forecast gap, we examine participants’ decision procedures.
The gap should not arise if, in Forecast Revision, participants correctly implement the standard
“infer-then-LolE procedure” by (a) first updating their beliefs about the states as in Inference and
(b) then using these posterior beliefs to compute the expected value of the forecast outcome under
the LolE. One possibility is that participants intend to follow the infer-then-LolE procedure, but
make errors due to its complexity. We present multiple pieces of evidence against this possibility.
In particular, we run a treatment that shows participants their own inference answers when they
solve the corresponding forecast-revision problems, effectively reducing the two-step infer-then-
LolE procedure to a one-step procedure of simply applying the LolE. The treatment, however, has
little impact on the gap. Moreover, we confirm that participants are largely capable of applying the
LolE correctly when solving a standalone expectation-formation problem. These results suggest
that, in general, participants are not using the infer-then-LolE procedure in Forecast Revision—
correctly or with errors. Instead, they resort to alternative nonstandard procedures.

What alternative decision procedures do participants use? We shed light on this question by
detecting modal behaviors in the two updating tasks. In Inference, the modal behavior is “non-
updates:” in 30% of the answers, the posterior equals the prior. In Forecast Revision, the fraction of
non-updates drops to 22%; meanwhile, two other behaviors that rarely appear in Inference become
modal. The first mode, representing 20% of the answers, is to answer 100 when the signal is good
and O when it is bad. The answers mean that participants make forecasts as if they were 100%
sure about being in the more representative state—the state more consistent with the signal—a
simplifying heuristic that we term “exact representativeness.” The second mode, constituting 12%
of the answers, is to report a forecast that equals the signal itself. That is, participants directly
use the realized signal as their expectation of the next outcome—a simplifying heuristic that we
term “naive extrapolation.” Each of the three modal behaviors corresponds to participants using
a different salient statistic in the information environment—the prior, the outcome expectation

conditional on the representative state, and the realized signal—as an anchor in making forecasts.



Moreover, excluding these modal behaviors would substantially reduce the inference-forecast gap,
suggesting that they are largely responsible for the aggregate patterns.

What gives rise to these different simplifying heuristics? We propose and test a conceptual
framework based on the attribute substitution theory (Kahneman and Frederick, 2002)). Our frame-
work posits that, when solving a belief-updating problem that elicits a variable (‘“target statistic”),
decision-makers may not know exactly how to aggregate all the available information to arrive at
the target statistic. As a result, they may use “nontarget statistics” that are (i) readily available or
easily computable, and (ii) similar to the target statistic, as proxy solutions. For example, in the
forecast-revision problem, the target statistic is the expected outcome conditional on the realized
signal. Participants, uncertain about how to calculate the target statistic, may instead use the ex-
pected outcome conditional on the representative state as their answer, as it is readily available and
similar to the target statistic. The same nontarget statistic, however, looks less similar to the target
statistic in the inference problem, which can explain why exact representativeness is less common
in that problem. Analogously, the realized signal looks more similar to the target statistic in the
forecast-revision problem than that in the inference problem, leading to more naive extrapolation
in the forecast-revision problem. To test this mechanism, we run two additional treatments that
vary the similarity between nontarget statistics and the target statistic. In one treatment, for exam-
ple, we increase the similarity between the two nontarget statistics driving exact representativeness
and naive extrapolation and the target statistic in the inference problem. As our framework pre-
dicts, these two heuristics become more prevalent, the reaction to the signal is stronger, and the
inference-forecast gap is reduced.

Our main results—namely, the inference-forecast gap and the use of heuristics—are based on
an experimental setting that is simple and transparent. An important question remains as to how to
apply these findings in more complex field settings. In the last part of the paper, we take a first stab
at this question by (a) discussing how a higher degree of complexity in the field may strengthen the
phenomena observed in our experiment, and (b) presenting suggestive evidence that the heuristics
identified in our experiment also emerge in survey forecasts of real economic variables, among
both professional forecasters and households. We also discuss the implications of our results for
future research on belief formation, on both theoretical and empirical fronts.

Our work is related to an active body of experimental research seeking to understand the con-
ditions of underreaction and overreaction in belief updating (Hartzmark et al., 2021} |Afrouzi et al.,
2023; [Enke and Graeber, 2023; Enke et al., 2024} |He and Kucinskas, 2024; Liang, forthcoming)E]
Recently, Ba et al.|(2023), |Kieren et al.| (2023)), and |Augenblick et al. (2024)) also try to reconcile

under- and overreaction in different settings. They focus on inference tasks under the bookbag-

2Empirical work using field or survey data, including Malmendier and Nagel| (2011, 2016) and [Wang|(2020), also
discusses the conditions under which people overreact and underreact to new information.



and-poker-chip paradigm to detect conditions that moderate under- and overreaction such as the
number of states and the strength and sequence of signals. Unlike these papers, we fix the infor-
mation environment and vary the type of belief-updating problems, and we find that underreaction
in inference problems does not generalize to forecast-revision problemsE] This brings a new per-
spective to this literature: the direction of belief-updating biases can depend on the types of belief
elicited. Moreover, by connecting the inference-forecast gap to the use of different simplifying
heuristics, we further highlight the role of complexity and incorrect mental models in explaining
belief-updating biases (Enke and Zimmermann, 2019 Enke, 2020; Andre et al., [2022; Graeber,
2023;|Agranov and Reshidi, 2024; Esponda et al., 2024; Kendall and Oprea, [2024).

Our proposed similarity mechanism for the inference-forecast gap builds on recent work on
salience and memory retrieval (Kahana, 2012; Bordalo et al., 2023a). In a contemporaneous paper,
Bordalo et al.| (2023b) propose a model closely related to ours. In their model, decision-makers
focus on salient features of a judgment problem and apply Bayes’ rule only to these features to
calculate probabilities. Similarly, our framework assumes that some decision-makers use only one
statistic to form their judgments. However, in our framework, they do so because they do not know
how to aggregate multiple statistics, such as using Bayes’ rule or the law of iterated expectations.
Consequently, instead of incorporating the attended features into Bayes’ rule to form beliefs, our
decision-makers use the face value of their selected statistic as a proxy solution. Compared to
their model, our framework can be applied to problems eliciting expectations and other statistics
in addition to problems eliciting probabilistic beliefsﬂ

We provide experimental evidence for overreaction in forecast-revision problems and discuss
its implications for field settings. In this regard, our paper complements experimental studies on
autocorrelated time-series forecasts (Hey), 1994} Frydman and Navel 2017; Afrouzi et al., 2023}; |He
and Kucinskas| 2024) to provide support for overreaction in survey expectations (e.g., Greenwood
and Shleifer, |2014; Bordalo et al., [2020; Barrero, 2022)). Unlike previous forecast experiments,
DGPs in our experiment fully specify the underlying states, which in turn determine the signal

and outcome distributions. This design brings the setting closer to standard models in macroe-

3A few belief-updating experiments using the bookbag-and-poker-chip design elicit beliefs of future draws con-
ditional on the current draw. Moreno and Rosokha! (2016J)), Bland and Rosokhal (2021)), Hartzmark et al.| (2021)) and
Epstein and Halevy|(2024)) find either near-Bayesian updating or overreaction in their average results, and [Fehrler et al.
(2020) finds underreaction. None of these experiments compare beliefs of future draws with beliefs of the bookbag’s
composition.

4Our paper is also related to the psychology literature on the asymmetry between diagnostic reasoning
(Pr(Cause|Effect)) and predictive reasoning (Pr(Effect|Cause)) in a given causal structure (e.g., Tversky and Kahne-
man, |1980; [Fernbach et al., 2011). While the inference problem in our paper is synonymous to diagnostic reasoning,
forecast revision is different from either kinds of reasoning in this literature because it elicits the belief of one “effect”
(the forecast outcome) of the “cause” (the underlying state) conditional on another effect (the signal). Moreover, in
parts of our experiments, we elicit forecasts without showing participants any signal, which is more akin to predictive
reasoning. However, we show that biases in these parts cannot explain the inference-forecast gap.



conomics and finance and lends several advantages to our analysisE] First, the explicit separation
between states and outcomes makes it possible to design different problems targeting inference
and forecast revision, respectively, thereby allowing us to pin down where a specific updating
bias arises. Second, it allows us to separately identify the specific forms of overreaction, such as
representativeness-based overreaction (Kahneman and Tversky, 1972; Bordalo et al., 2018) and
mechanical extrapolation (Barberis et al., 2015, 2018)). Third, having a fully-specified DGP allows
us to attribute biases in posterior beliefs to incorrect statistical reasoning rather than to misper-
ceived DGPs.

Overreaction in Forecast Revision is reminiscent of the hot-hand bias, the exaggeration of belief
in an outcome after observing a long streak of the same outcomes (Gilovich et al.| [1985]; Tversky
and Gilovich, [1989; |Suetens et al., 2016)E] In contrast, overreaction occurs in our experiment af-
ter just one signal realization. Moreover, we find overreaction even when the forecast outcome is
different from the signal variable and fully determined by the state, a setting in which mispercep-
tions of outcome autocorrelation and related phenomena such as the hot-hand bias, are irrelevant[]
Overall, it is unlikely that our results are driven by the hot-hand bias.

The rest of the paper proceeds as follows. Section 2] outlines our experimental design. Section
[3|documents the existence of the inference-forecast gap. Section []studies the decision procedures
used by participants. Section[5|explores the mechanisms behind these decision procedures. Section

[6] concludes and discusses the implications of our results.

2 Experimental Design

2.1 Environment

To compare belief updating between making inferences and revising forecasts for the same
individual, we adopt a within-participant experimental design. For each inference problem a par-
ticipant solves, there is a corresponding forecast-revision problem with the same information en-
vironment, i.e., the same DGP and the same realized signal.

The main treatment, Baseline, has five parts, summarized in Table Each part has eight rounds

3In asset-pricing models, when investors are learning about firm quality (fundamentals), it is common to assume
that they observe noisy signals of quality such as stock returns (e.g., |Glaeser and Nathanson, |2017). In the mutual
fund literature, investors learn about manager skills by observing past fund returns (e.g., Berk and Green, 2004; Rabin
and Vayanos|, |2010). In the labor literature, job seekers learn about their employability from the offers they receive
(Burdett and Vishwanathl, [1988)).

®The opposite phenomenon of the gambler’s fallacy, which is more often observed in experiments (Benjamin,
2019)), would predict more underreaction in forecast-revision tasks.

’Our underinference result is also inconsistent with the leading account of the hot-hand bias, which is based
on overinference (Rabin, 2002; Rabin and Vayanos, 2010). At the design level, we use explicit instructions and
comprehension checks to make sure participants do not commit the hot-hand bias.



of problems. In each round, participants are first presented with a “firm” randomly drawn from
a new pool of 20 firms. A firm’s state, 6, is either G(ood) or B(ad). Participants do not know
the state of the drawn firm, but are given the composition of the pool, which specifies the prior
distribution over the states. The firm generates signals, s;, which are framed as the firm’s stock
price growth in month ¢. Participants are provided with the conditional distributions of signals:
signals of a good firm follow an i.i.d. normal distribution of N (100, 0?) and signals of a bad firm
follow i.i.d. N (0, 02)E] Because good firms are more likely to have higher stock price growth than

bad firms, a signal of high stock price growth (higher than 50) is diagnostic of the firm being good.

Table 1: Summary of variables elicited in each part of Baseline

Number Part Show signal? Beliefs elicited
1 Inference Prior No Pr(0)
2 Inference Yes Pr(6]so)
3 Forecast Prior No E(sy)
4 Forecast Revision Yes E(s1]s0)
5 Expectation Formation No E(s1)

To sum up, in each round, the DGP is fully specified by two pieces of information: the prior
distribution of states and the conditional distributions of signals. Both are presented to participants
using figures and texts in a one-page display (see Figure [2] for an example), and we explain this
interface with detailed instructions )| Table[2] summarizes the parameter values for the eight DGPs.
We include six DGPs with symmetric priors (Pr(G) = 50%) and two DGPs with asymmetric pri-
ors. The DGPs with symmetric priors allow us to identify underreaction and overreaction without
confounds from base-rate neglect, while the DGPs with asymmetric priors help us examine the
robustness of our results. Each DGP is represented by one problem in each of the five parts (the
DGP is modified in the Expectation Formation part, which we will explain later). As a result,
answers across parts are directly comparable. Unless mentioned otherwise, an observation refers
to a participant’s answers to the five corresponding questions in all five parts.

The two main parts of the experiment are Inference and Forecast Revision. For both parts, in
each round, participants first observe the firm’s stock price growth in the current month sq. In
Inference, after seeing the realized signal, participants report their updated beliefs about the states

Pr(6|sg). These beliefs are elicited in percentages, and henceforth we will refer to an inference

81n the actual implementation, we discretize the supports of normal distributions to multiples of 10 and truncate at
both tails.
9Screenshots of the experimental interface can be found in the Online Appendix.



There is a new pool of 20 firms.
The figure below describes the stock price growth of good firms and bad firms in any given month:

The green bar on top of each number is the chance (%) that a good firm's stock price grows by that number (in ¢) in any
given month.

The bar on top of each number is the chance (%) that a bad firm's stock price grows by that number (in ¢) in any
given month.

Good firms' monthly stock price growth is 100¢ on average
firms' monthly stock price growth is 0¢ on average

Monthly Stock Price Growth of Good Firms and Bad Firms
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The pool of firms has the following composition.

Bad Firms & Good Firms

Figure 2: An example of the interface for the DGP

Table 2: Parameter values for DGPs

Index 1 2 3 4 5 6 7 8
Pr(G) 50% 50% 50% 50% 50% 50% 80% 20%
o 50 60 70 80 90 100 100 100

answer as the reported belief about the Good state without the % signEl In Forecast Revision, par-

101n the experimental interface, there is one blank for the belief about the Good state and one for the Bad state. Once
a participant types a number into one of the two blanks, the other blank will be automatically filled with 100 minus



ticipants instead report their updated expectations about the firm’s stock price growth next month
E(s1]s0). To allow for a direct comparison between the two parts, signal realization is set to be the
same in any two corresponding rounds for the same participant, though it varies across participants.

In the other three parts, participants do not observe any signal realization before their beliefs are
elicited. In Inference Prior, participants directly report prior beliefs about the states Pr(#) based on
their knowledge about the DGP. Similarly, in Forecast Prior, they directly report prior expectations
about the signal E(s;). These two parts test whether participants can correctly form prior beliefs.
The last part, Expectation Formation, is identical to Forecast Prior, except for the composition of
firms in the pool. While the composition of firms in Forecast Prior is set exogenously according to
Table[2] in Expectation Formation it is determined endogenously by participants’ reported posterior
beliefs about the states in Inference. For example, if a participant reports a posterior belief of
Pr(Glsg) = 40% in a round in Inference, then the pool of firms in the corresponding round in
Expectation Formation will have 8 (= 40% x 20) good firms and 12 bad onesE] Expectation
Formation is designed to test whether participants can correctly form expectations about the next
signal when the states are distributed according to their own inference posteriors.

To ensure that sufficient attention is paid to the problems and to prevent click-through behavior,
participants need to stay on each page for at least eight seconds before they are allowed to type in
their answers. For each participant, we further randomize (a) the order of different DGPs in each
part and (b) the order of the five parts. For the latter randomization, we require that (a) priors are
elicited before eliciting the corresponding posteriors and (b) the Expectation Formation part comes
after Inference. Hence, we are left with three orders of parts: 12345, 12534, and 34125.

After the five parts, participants complete an unincentivized exit survey. At the end of the
experiment, participants may receive a $5 bonus payment, and their chance of receiving the bonus
depends on their answer in one randomly selected round through a quadratic ruleE]

Building on Baseline, we implement a straightforward robustness check by framing the signal
as revenue growth instead of stock price growth. In Appendix [A.5 we show that results are quali-
tatively similar regardless of framing, and thus we pool the data across the two frames for our main

results.

that number. Only numbers in the range [0, 100] are allowed.

""The numbers of good and bad firms in Expectation Formation are rounded to the nearest integer if the reported
beliefs in Inference are not a multiple of 5%. Fourteen percent of the answers in Inference are not multiples of 5%,
among which half are rounded up and the other half rounded down.

I2If their answer in that round equals the rational benchmark according to standard probability theory, then they
receive the bonus with certainty; otherwise, their chance of getting the bonus decreases quadratically in the difference
between their answer and the rational benchmark (see (Hartzmark et al.l|2021) for a similar incentive structure). If the
answer is p and the rational benchmark is ¢ (in % for the two Inference parts), then the chance of receiving the bonus
is max{0, (100 — (p — q)*)%}.



2.2 The no inference-forecast gap benchmark

According to standard probability theory, answers in Inference and Forecast Revision should
be tightly linked. Specifically, the Law of Iterated Expectation (henceforth abbreviated as “LolE”)

implies the following equation:
E(s1|s0) = Pr(G|so) x E(s1|G, so) + Pr(B|so) x E(s1]|B, s¢)- (1)

In our experiment, s; and s, are independent conditional on the state 6, so E(s1|G, so) = E(s1]|G) =
100 and E(s1|B, s¢) = E(s1|B) = 0. Therefore, Equation (1)) simplifies to the following equation:

E(s1]s0) = Pr(GJso) x 100. (2)

We term Equation (2)) the “no inference-forecast gap” condition. It summarizes the theoretical link
between the posterior belief about the underlying states and the updated forecast of the outcome
variable s;. If an inference answer and its corresponding forecast-revision answer satisfy this con-
dition, then there should be no discrepancy between these two types of belief-updating problems:
Bayesian inference would translate to rational forecasts, and any deviation from Bayes’ rule in the
inference answer would imply the same deviation from rationality in the forecast-revision answer.

The computational simplicity of Equation (2)) is an advantage of our experimental design. Un-
der the no inference-forecast gap condition, if a signal leads to a belief that the good state has 40%
probability, then the resulting expectation of the outcome should be 40. For participants who un-
derstand this condition, the computational cost of solving a forecast-revision problem is very close
to that of solving the corresponding inference problem. Therefore, computational complexity alone
is unlikely to cause violations of the no inference-forecast gap ConditionE]

When participants solve a forecast-revision problem, one simple and standard procedure that
satisfies the no inference-forecast gap condition is the following “infer-then-LolE” procedure: In
the first step, participants update their beliefs about the states using the same (and possibly non-
Bayesian) rule as in the corresponding inference problem; in the second step, they apply the LolE
using the posteriors from the first step to obtain their expectations about the forecast outcome. In

later parts of the paper, we will examine whether participants follow this procedure.

3Moreover, because beliefs are equally incentivized across the two types of problems, rational tradeoffs between
monetary gains and computational costs, in the spirit of [Sims| (2003); |Gabaix| (2014); |Caplin and Dean| (2015); and
‘Woodford| (2020), cannot generate an inference-forecast gap.
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2.3 Instructions and comprehension questions

Participants receive extensive instructions, with the tasks and incentive structure explained in
detailed and intuitive terms. In particular, we go to great lengths to ensure that participants fully
understand the DGP. First, we emphasize that the state of a firm is constant across months but
the signals are i.i.d. conditional on the state. In doing so, we explicitly caution against incorrect
beliefs that the signals are autocorrelated conditional on the state. Second, we use an example
DGP to illustrate the discretized normal distributions of the signals. In particular, we highlight the
conditional means (0 and 100) and the property that signals higher (lower) than 50 are good (bad)

news about the firm’s quality. Third, we present participants with two explicit formulae, one for

number of Good firms
20

and one for calculating the expectation about the signal from the belief about the states (E(s) =

calculating the prior distribution over states from the pool composition (Pr(G) =

Pr(G) x 100). However, we do not mention or nudge participants toward any specific belief-
updating rule.

At the end of the instructions, participants need to answer a set of comprehension questions
that test their understanding of the DGP, the incentive structure, and the two formulae. Participants

can proceed only if they have answered all the comprehension questions correctlyEf]

2.4 Procedural details

We programmed our experiment using oTree (Chen et al., 2016). For Baseline, we recruited
279 participants through Prolific, an online platform designed for social science researchE] Sig-
nals were framed as monthly revenue growth for 142 participants and as stock price growth for
137 participants. There was also some variation across participants in the order of parts: 102 par-
ticipants went through the experiment in the order of 12345, 103 in the order of 12534, and 74 in
the order of 34125. The participants, on average, spent about 30 minutes on the experiment and

earned a payment of $7.08, $5 of which was the base payment.

2.5 Other treatments

In addition to Baseline, we also implemented several other treatments to investigate the ro-
bustness of and the mechanisms behind our results. These treatments are summarized in Table 3]

Details about these treatments will be described in their respective sections.

141f there are mistakes, participants will be asked to re-answer those questions.
15See Palan and Schitter; (2018) on using Prolific as a participant pool. We recruited only US participants who had
completed more than 100 tasks on Prolific and who had an approval rate of at least 99%.
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Table 3: Overview of additional treatments

Treatment Section Key differences from Baseline

Deterministic Outcome 3.2 Forecast outcome is a different variable (100 if 0 = G and 0if 6§ = B)

Binary Signal 3.3 Signals are binary; forecast questions ask about full distributions

Nudge 4.1 Beliefs about states and forecasts are elicited on the same page

More Similar 501 State variable (Proﬁtablllty) = mean of 51gna1 or forecast outcome (profits)
inference questions ask about the expectation of the state

Less Similar 500 Forecast outcome is a different variable (up if 6 = G and down if

0 = B); forecast questions ask about full distributions

3 Evidence for the Inference-Forecast Gap

3.1 Aggregate patterns

In this section, we compare belief updating between inference and forecast-revision problems
using two methods of analysis. First, we classify each answer into one of three categories—
Near-rational, Underreaction, and Overreaction—and examine the distributions of answers by cat-
egories. Second, we calculate the average belief movement from the prior to the posterior. Recall
that, if the no inference-forecast gap condition in Equation (2)) is met, then results from Inference
and Forecast Revision should exhibit similar patterns. Any systematic difference, therefore, would
imply an inference-forecast gap.

For an inference problem in our experiment, the rational benchmark is given by Bayes’ rule:

Pr(G) - Pr(so|G)

Rational o
Pr(Glso) = pray Pr(so|G) + Pr(B) - Pr(so|B)’ ©)

For a forecast-revision problem in our experiment, the rational benchmark can be derived by ap-

plying LIE to the corresponding rational inference answer:

ERational(Sl|SO> — PrRationzﬂ(G’SO) % E<81|G) + PrRational(Bls()) % E(SHB)
= PrRoml(Gs4) x 100. “4)

Note that the no inference-forecast gap condition in Equation (2) is satisfied by the rational bench-
marks.
We first classify answers in Inference and Forecast Revision by how they compare to the ra-

tional benchmarks. An answer is classified as Near-rational if its difference from the rational
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benchmark is no more than 2.5E‘] To introduce the categories of Underreaction and Overreaction,
we first define an “update” by how much an answer moves from its (objective) prior value in the

direction of the realized signal s:

answer — prior, if so > 50
update = : (%)
prior — answer, if sq < 50

For any two corresponding inference and forecast-revision problems, Equations (3)) and () imply
that their rational updates are identical. We classify an answer as Underreaction (Overreaction) if
the update is smaller (larger) than the rational update by more than 2.5; we do not classify answers
when sy = 50, i.e., the realized signal is uninformative.

Table 4| shows the aggregate patterns in Baseline (excluding observations with a signal of 50).
The first three columns concern the distribution of answers by categories. Results from Infer-
ence replicate the key finding from the classic bookbag-and-poker-chip literature: participants
overwhelmingly underreact to new information and update too little about the firm’s underlying
state. Out of all the answers, 60.8% are Underreaction, 24.1% are Overreaction, and 15.2% are
Near-rational. These patterns, however, flip in Forecast Revision: 53.9% of the answers indicate
overreaction to new information, higher than the fraction of 39.7% classified as Underreaction.

Table 4: Aggregate patterns in Baseline

N=279, Obs.=2144 Classification Update

Underreaction Near-rational Overreaction Mean (s.e.)

Inference 60.8% 15.2% 24.1% 14.3 (.7)
Forecast Revision 39.7% 6.4% 53.9% 32.7 (2)
Rational 23.3(0.3)

Notes: The first three columns present the percentages of answers classified as Underreaction, Near-rational, and
Overreaction. The last column shows the average belief movement from the (objective) prior to the posterior, as well
as the rational benchmark. Observations with the signal equal to 50 are excluded. Standard errors are clustered by
participant.

The last column of Table [ concerns the average update. In Inference, the average update is
14.3, significantly lower than the average rational update of 23.3 (p < 0.01). By contrast, in

Forecast Revision, the average update is 32.7, significantly higher than the rational benchmark (p <

16We choose the number 2.5 so that the interval for near-rational covers at least one multiple of five, on which
participants’ answers tend to cluster.
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0.01). Therefore, both methods of analysis suggest an inference-forecast gap. In the Appendix,
Table [AQ] further confirms the statistical significance of the inference-forecast gap in a regression
framework.

The inference-forecast gap is highly robust in various cuts of the data (see Section [A] of the
Appendix for details). First, in a more “reasonable” subsample that only includes observations with
(a) answers that fall within [0, 100] and (b) updates in the correct direction, Forecast Revision no
longer exhibits overreaction on average, but the inference-forecast gap remains highly significant.
Second, the gap is present under all eight DGPs, even though they entail different priors and signal
distributions. Third, the gap increases for stronger signals—that is, when the signal deviates more
from 50 and therefore becomes more informative—but exists even for the weakest signals. Fourth,
our results persist in a subsample that excludes observations with incorrect reported prior beliefs.
Fifth, there is no qualitative impacts on the inference-forecast gap (a) when we change the order of
experimental parts, (b) when the signal and outcome are framed as revenue growth, and (c) when

we control for participant characteristics.

3.2 Deterministic OQutcome treatment

In this and the next subsection, we investigate the inference-forecast gap in two additional treat-
ments with alternative DGPs. In Baseline, the forecast outcome and the realized signal are part of
the same time series. Therefore, the observed inference-forecast gap could be due to misperceived
signal autocorrelation and related phenomena such as the hot-hand bias (Gilovich et al., 1985;
Tversky and Gilovich, |1989; Suetens et al., 2016). To rule out this explanation, we implement an
additional treatment called Deterministic Outcome.

In this treatment, the outcome variable in Forecast Revision is different from the signal variable:
when the outcome variable is the firm’s stock price growth, the signal variable is the revenue
growth, and vice versa. Moreover, the outcome variable is fully determined by the state: it equals
100 for sure in the Good state and O for sure in the Bad state. The distributions of the state
and the signal are the same as in Baseline. Under this alternative DGP, the no inference-forecast
gap condition remains the same: the forecast-revision answer equals the corresponding inference
answer (minus the % sign). But unlike in Baseline, the perceived correlation between the signal
and the outcome should be irrelevant for the inference-forecast gap here: since the outcome is
fully determined by the state, the perceived signal-outcome correlation should be the same as the
perceived signal-state correlation.

Table 5] shows a similar inference-forecast gap for Deterministic Outcome compared to Base-
line. In the Appendix, Table further confirms, in a regression analysis, that the gap is statisti-
cally significant.
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Table 5: Aggregate patterns in Deterministic Outcome

N=100, Obs.=777

Classification

Update

Underreaction Near-rational

Overreaction Mean (s.e.)

Inference
Forecast Revision

Rational

64.4%
39.9%

14.8%
8.6%

20.8% 13.4 (1.3)
51.5% 34.1 (3.5)
23.1 (.4)

Notes: The first three columns present the percentages of answers classified as Underreaction, Near-rational, and
Overreaction. The last column shows average belief movements in the signal direction from the (objective) priors and
their rational benchmark. Observations with the signal equal to 50 are excluded. Standard errors are clustered by
participant.

Results from Deterministic Outcome clearly show that the hot-hand bias cannot account for
the inference-forecast gap. This further differentiates our results from overreaction in univariate
forecasts (Hey, [1994; [Frydman and Navel [2017; |Afrouzi et al., 2023) in which exaggerated auto-
correlation is a key driving force. Moreover, the treatment helps address two additional robustness
issues. First, the inference-forecast gap is not limited to cases where the signal and the outcome
share the same variable name and distribution. Second, even when the state variable and the out-

come variable share the same distribution, an inference-forecast gap can still arise.

3.3 Binary Signal treatment

In a second treatment called Binary Signal, the signal s; follows a binary distribution instead
of a continuous distribution. In particular, the signal is framed as the direction of the firm’s stock
price movement and is either up or down, and the probability of an upward movement is higher if
the firm’s state is Good. The parameters for the DGPs are listed in Table [6] In the Forecast Revi-
sion part of this treatment, the problem asks about the full probability distribution of the outcome

Pr(s;), instead of the expectation E(s;).

Table 6: Parameter values for DGPs in Binary Signal

Index 1 2 3 4 5 6 7 8

Pr(G) 50% 50% 50% 50% 50% 50% 80% 20%
Pr(up|G) 60% 70% 80% 90% 70% 55% 70% 70%
Pr(up|B) 40% 30% 20% 10% 45% 30% 30% 30%
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As in Baseline, the no inference-forecast gap condition in Binary Signal is given by the LIE:
Pr(s; = uplso) = Pr(G|so) x Pr(up|G) + Pr(B|sqg) x Pr(up|B). (6)

Substituting in Pr(up) = Pr(up|G) x Pr(G) + Pr(up|B) x Pr(B), which is the LIE applied to the

objective prior beliefs, we obtain the following equation:

Pr(s; = up|so) — Pr(up)
Pr(up|G) — Pr(up|B)

= Pr(Glso) — Pr(G). (7)

Equation ([7) states that under the no inference-forecast gap condition, the inference update equals
the normalized forecast-revision update, defined by how much the forecast revision answer moves
from the objective prior in the signal direction divided by the range of outcome probabilities,
Pr(up|G) — Pr(up|B). This equation is not as simple as Equation (2)) in Baseline, so compu-
tational complexity could confound the comparison between inference and forecast revision an-
swers However, one advantage of the Binary Signal treatment is that it is closer to the common

design in the bookbag-and-poker-chip paradigm (Benjamin, 2019).

Table 7: Aggregate patterns in Binary Signal

N=140, Obs.=1120 Classification Update

Underreaction Near-rational Overreaction Mean (s.e.)

Inference 61.0% 20.1% 18.9% 11.0 (0.9)
Forecast Revision 54.9% 6.7% 38.4% 14.2 (2.2)
Rational 18.7 (0.0)

Notes: The first three columns present the percentages of answers classified as Underreaction, Near-rational, and
Overreaction. The last column shows average belief movements in the signal direction from the (objective) priors and
their rational benchmark. The updates of forecast-revision answers are normalized by Pr(up|G) — Pr(up|B) so that
they are comparable to the inference updates. Standard errors are clustered by participant.

In Binary Signal, the three categories—Near-rational, Underreaction, and Overreaction—are
defined in the same way as in Baseline, except that the categories for forecast-revision answers are
defined based on their normalized updates. Table [/|reports the results from Binary Signal. As in
Baseline, more answers are classified as Overreaction in Forecast Revision than in Inference, and

the average update in the former part is also largerl]f] However, answers in Forecast Revision do

7For example, computational complexity could lead to higher degrees of cognitive uncertainty (Enke and Graeber,
2023)). This could push forecast-revision answers toward underreaction.
!8In the Appendix, Table shows in a regression that the gap in updates is significant at the 10% level.
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not exhibit overreaction on average. Overall, the Binary Signal treatment shows that the inference-
forecast gap extends to environments with alternative signal distributions. It also shows that this
phenomenon can persist when the elicited object in Forecast Revision is the full distribution of the

outcome instead of its expected value.

4 Decision Procedures

To investigate the mechanisms driving the inference-forecast gap, we next examine the deci-
sion procedures used by participants in forecast-revision problems. As discussed in Section
the inference-forecast gap should not arise if participants correctly implement the infer-then-LolE
procedure by: (i) first updating their beliefs about the states, in the same way as in the inference
problems, and (ii) then applying the LolE to form expectations about the forecast outcome. The
existence of an inference-forecast gap thus rejects that participants correctly implement this pro-
cedure in Forecast Revision. However, it is still possible that participants simply implement this
procedure incorrectly: that is, they intend to follow the infer-then-LolE procedure, but make errors
because of the two-step nature of the procedure. In Sectiond.1] we argue that this is unlikely to be

the case. Then, in Section#.2] we analyze what alternative procedures participants use.

4.1 Implementation errors or alternative procedures?

In this section, we present three pieces of evidence that go against the hypothesis that partici-
pants intend to follow the infer-then-LolE procedure but simply make errors when they implement
this procedure. In summary, we find that: (a) a treatment that reduces the complexity of the proce-
dure does not significantly reduce the inference-forecast gap; (b) there is a very weak correlation
between underreaction (overreaction) in inference problems and underreaction (overreaction) in
forecast-revision problems; and (c) participants react significantly to the prior variance of the sig-
nal in inference problems but not in forecast-revision problems. Next, we detail these results in

succession.

4.1.1 Reducing the complexity of the infer-then-LolE procedure

If the two-step nature of the infer-then-LolE procedure causes participants to make errors in
implementing this procedure, then reducing the complexity of the procedure should mitigate such
errors and reduce the inference-forecast gap. To test this hypothesis, we run an additional treat-
ment, Nudge: in experimental parts that provide signals, after observing the realized signal, partic-

ipants are first asked to report their beliefs about the states; and then, while the answers they just
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typed in are still on the screen, they are asked to report their expectations about the next signal{]f]
For a participant intending to follow the infer-then-LolE procedure, this design makes a forecast-
revision problem no more complex than simply applying the LolE: one only needs to multiply the
inference posterior by 100 to complete the infer-then-LolE procedure. In fact, because the infer-
ence question is quoted in percentage terms and the forecast-revision question in cents, participants
can just type in the exact same number.

However, we find that displaying their own inference answers when participants revise their
forecasts does not change the overall pattern of the inference-forecast gap. Table |8 shows the
aggregate patterns in Nudge. Same as in Baseline, participants overwhelmingly underreact in

Inference and on average overreact in Forecast Revision[]

Table 8: Aggregate patterns in Nudge

N=100, Obs.=750 Classification Update

Underreaction Near-rational Overreaction Mean (s.e.)

Inference 70.9% 10.0% 19.1% 10.1 (1.3)
Forecast Revision 41.3% 6.4% 52.3% 29.8 (3.0)
Expectation Formation 60.0% 6.7% 33.3% 14.7 (2.3)
Rational 22.5(.5)

Notes: The first three columns present the percentages of answers classified as Underreaction, Near-rational, and
Overreaction. The last column shows average belief movements in the signal direction from the (objective) priors
and their rational benchmark. The expectation-formation answers are analyzed in the same way as the corresponding
forecast-revision answers: the update of an expectation-formation answer is defined as the answer minus the (objective)
prior in the corresponding forecast-revision problem if the signal in the latter problem is greater than 50 and the reverse
if the signal is smaller than 50. The classification of an expectation-formation answer is conducted against the rational
benchmark for the corresponding forecast-revision problem. Observations with the signal equal to 50 are excluded.
Standard errors are clustered by participant.

How can we explain the persistence of the inference-forecast gap in Nudge? One possibility is
that while the treatment indeed makes the infer-then-LIE procedure no more complex than solving
a standalone expectation-formation problem, even the latter is error-prone for our participants, and
the errors lead to overreaction. To test this possibility, in another part of Nudge called Expecta-

tion Formation, we ask participants to solve a standalone expectation-formation problem without

“More specifically, participants have to stay on the page for eight seconds before answering each question. The
forecast-revision question appears only after the answer to the inference question has been submitted. Participants can
revise their answers to the inference question before they submit their answers to the forecast-revision question. The
design of this treatment is similar to the Nudge treatments in |[Enke|(2020) in spirit.

20In fact, the inference-forecast gap in Nudge is even larger than in Baseline, according to the regression analysis in

Table
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Average Deviations from Correct Answers
Expectation Formation Problems in Nudge
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Figure 3: Deviations from LIE in expectation-formation problems by prior

Notes: We divide the expectation-formation problems in Nudge into five groups depending on the priors, and calculate
the average error (deviation from correct answers) for problems in each group. Standard errors are clustered by
participant.

seeing any signal realization. Specifically, in each round, we set the distribution over states in the
expectation-formation problem to match the participant’s own posterior beliefs reported in the cor-
responding inference problem. For example, if a participant reports Pr(G|sg) = 40% in a round
in Inference, then the pool of firms in the corresponding Expectation Formation round will have 8
(= 40% x 20) good firms and 12 bad ones

Figure [3|plots the average deviation from LolE in expectation-formation problems by the prior
(probability of the Good state) and shows that, on average, the deviation is small in magnitude
across the board. Moreover, in the third row of Table S| we classify expectation-formation answers
and calculate their updatesF_ZI Comparing the average update in Inference, Forecast Revision, and

Expectation Formation, we find that mistakes in Expectation Formation can account for only 23%

(_ 14.7-10.3
T 29.8-10.3

gap stems from the mistakes participants make in standalone expectation-formation problems. All

) of the inference-forecast gap. Therefore, it is unlikely that the inference-forecast

in all, results from Nudge suggest that the inference-forecast gap does not seem to result from

complexity-induced errors.

2'We implement a similar part in Baseline as well, and the results are similar (see Sectionin the Appendix).

22Similar to before, the update of an expectation-formation answer is defined as the answer minus the (objective)
prior in the corresponding forecast-revision problem if the signal in the latter problem is greater than 50 and the reverse
if the signal is smaller than 50. The classification of an expectation-formation answer is conducted against the rational
benchmark for the corresponding forecast-revision problem.
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4.1.2 Correlation between updating biases in inference and forecast revision

If participants generally follow the infer-then-LolE procedure in Forecast Revision, then we
should expect updating biases in Inference to be highly correlated with those in Forecast Revision.
However, we find that updating biases in Inference are only weakly correlated with biases in Fore-
cast Revision. For example, at the problem level, the correlation between overreaction in inference
problems and overreaction in forecast-revision problems is only 0.07. At the participant level, the
correlation between the fraction of overreactions in Inference and the fraction of overreactions in
Forecast Revision is only 0.1217_3-] We find very similar results when we study underreaction in-
stead of overreaction in each case. This weak correlation further casts doubt on the possibility that

participants follow the infer-then-LolE procedure.

4.1.3 Reaction to the prior variance of the signal in updating

Recall that we vary the prior variance of the signal among the problems with symmetric priors
(see Table [2)). We exploit this feature of our design by testing whether participants respond to
the standard deviation of the signal in updating, separately for Inference and Forecast Revision.

Specifically, we use the following linear speciﬁcationfj]
Absolute Update = (3 - Signal Conditional SD + Signal Value FE + Participant FE + ¢ (8)

This regression essentially tests whether participants update less to signals of a given value (e.g.,
90) when the conditional standard deviation of the signals is larger, as a Bayesian agent would do.

We estimate this equation separately for Bayesian updates, Inference updates, and Forecast Re-
vision updates, and report the results in Table[9} Column (1) simply confirms that a Bayesian agent
updates less to a given signal when the signal’s conditional standard deviation is higher. Column
(2) shows a similar pattern in Inference that is smaller in magnitude, indicating that participants
indeed react to signal variance but are less sensitive than what Bayesianism implies. Column
(3) shows that, in Forecast Revision, the reaction to signal variance is small and statistically in-
significant. If participants actively use their inferences as input when they revise their forecasts,
we should expect this coefficient to be much larger in magnitude and closer to the coefficient in
Column (2).

Taken together, results in this section suggest that participants do not appear to be following

the infer-then-LolE procedure when solving forecast-revision problems—correctly or with errors.

ZThese correlations do increase in the Nudge treatment, to 0.27 and 0.25 respectively, which is to be expected.
However, they are still far from perfect.

24The relationship between signal standard deviation and the Bayesian update is not exactly linear, and also varies
with the value of the signal. For ease of presentation, we adopt the linear specification as a reasonable approximation.
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Table 9: Does the amount of update respond to signal standard deviation?

Absolute Update: |Posterior — Prior|

Bayesian Inference Forecast Revision
(D 2) 3)
Signal Conditional SD (50 ~ 100) -0.434** -0.163*** -0.016
(0.005) (0.024) (0.056)
Signal Value FE Yes Yes Yes
Participant FE Yes Yes Yes
Observations 1604 1604 1604
R? 0.974 0.616 0.607

Notes: *, ** and *** indicate statistical significance at the 0.10, 0.05, and 0.01 levels, respectively. We only use
problems with a prior probability of 50% for the Good state; further, observations with the signal equal to 50 are
excluded. Standard errors are clustered by participant.

Rather, they appear to be using alternative procedures.

4.2 Alternative decision procedures

What alternative decision procedures do participants use in Forecast Revision? To answer this
question, we examine the distributions of posterior beliefs to detect potential modal behaviors.
To illustrate, Figure [] plots the answer against the realized signal for problems with symmetric
objective priors in Inference and Forecast RevisionE] In Inference, a large fraction of answers
equals the 50-50 prior, suggesting that many participants do not update based on the signal. The
prevalence of such non-updates replicates a stylized fact in previous inference experiments (e.g.,
Couttsl [2019; |Graeber, [2023)).

For Forecast Revision, non-updates also constitute a mode, shown by a cluster of answers that
equal the 50-50 prior. However, two other modes also emerge. First, many forecast-revision an-
swers cluster at 100 when sg > 50 and at 0 when sy < 50. Participants who give these answers
behave as if they were certain about being in the representative state (the state consistent with the
direction of the signal realization) and base their forecasts solely on that state. We term this over-

reacting behavior “exact representativeness’” because it is consistent with the representativeness

ZDistributions of answers in problems with asymmetric priors display similar patterns. See Appendixfor details.
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Figure 4: Scatterplots of answers against realized signals: subsample with symmetric priors

Notes: This figure plots the updated beliefs against the realized signals. The size of each circle represents the number
of answers that equal the value on the y-axis given the realized signal on the x-axis. We only use problems with a prior
probability of 50% for the Good state. In the right panel (the figure for Forecast Revision), we limit the range of the
y-axis to [-150, 250] and drop observations that fall outside this range.

heuristic (Kahneman and Tversky, 1972; |Bordalo et al., 2018)@ This behavior is also consis-
tent with a type of belief-updating process induced by coarse thinking (Mullainathan et al., [2008)).
Specifically, when updating beliefs, people consider only a finite set of categories rather than the
full continuum of categories, and they change categories only when they see enough data to suggest
that an alternative category better fit the data (Mullainathan, [2002).

Second, a smaller yet still significant fraction of forecast-revision answers are anchored at
the face value of the realized signal We term this behavior “naive extrapolation” because it
suggests a particular form of extrapolative beliefs whereby participants directly (and naively) use
the most recent realization as their forecast for the next realization (Barberis et al., [2015] 2018;
Liao et al., 2022)@ This behavior leads to overreaction in the problems with symmetric priors in
our experiment.

In Table [I0], we define the behavioral modes and quantify their prevalence in Baseline. Con-
firming the patterns in the scatterplots, non-updates are widespread in both Inference and Forecast
Revision, making up 29.7% and 21.9% of all answers, respectively. The other two behavioral

modes, exact representativeness and naive extrapolation, appear almost exclusively in Forecast

26Note that our notion of exact representativeness is different from that in|Camerer| (1987), who first introduced the
term.

2TFor each x-axis value—that is the value of the realized signal—we rank answers by the frequency of their occur-
rence. For 19 out of the 53 x-axis values, anchoring on the signal value is among the top three most frequent answers.
In comparison, non-updates and exact representativeness are each among the top two most frequent answers for 36
x-axis values.

28In general, extrapolation refers to people’s tendency to rely heavily on past outcomes to forecast future outcomes.
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Revision, making up 20.3% and 11.9% of the answers, respectively. Only 3.3% of the answers
meet the no inference-forecast gap condition and are not in any of the three behavioral modes. We
conduct further analysis in Appendix [B] where we find robust results when we relax the classifi-
cation criteria for the modes and when we classify the participants rather than the answerst] At
the participant level, we also document a modest degree of consistency between a participant’s
types in the two parts. For example, many participants are classified as non-updaters in both parts.
We also present results on the modal behaviors in three other treatments, Deterministic Outcome,

Binary Signal, and Nudge, and we find similar patterns.

Table 10: Modes of behavior in Baseline

Mode Criterion for answer Inference Forecast Revision
Non-update = prior 29.7% 21.9%
Exact representativeness = 100 if sg > 50, = 0 if sy < 50 2.6% 20.3%
Naive extrapolation = 5 3.2% 11.9%

No inference-forecast gap inference = forecast revision 3.3%

(excluding the other modes)

Unclassified 61.8% 45.2%
Observations 2144 2144

Notes: The column “Criterion for answer” shows the criterion for an answer to be classified into a mode. Note that
an answer may be classified into more than one mode. The percentages in the last two columns are the fractions of
answers in each mode in Inference and Forecast Revision. Observations with the signal equal to 50 are excluded.

The difference in modal behaviors is an important driver of the inference-forecast gap. The
gap shrinks by 36% when we exclude observations with at least one answer classified as exact
representativeness or naive extrapolation. In a more “reasonable” subsample in which all forecast-
revision answers fall within [0, 100] and no answers update in the wrong direction, the inference-
forecast gap is in fact reversed when the two modes are excluded, suggesting that the gap is largely
explained by the presence of these modes. More details are reported in Tables [A6] and [A7] of the
Appendix.

It is worth noting that all three behavioral modes, albeit capturing different answers, share one

common feature: each solely relies on one salient cue in the information environment. Specifically,

*In Table we relax the classification criteria for the modes and find similar qualitative patterns. Table
shows similar patterns in a participant—part—level classification exercise, where a participant is classified into a type
for a given part (Inference or Forecast Revision) if more than half of her answers in that part are classified into the
corresponding mode.
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answers in non-updates, exact representativeness, and naive extrapolation are based entirely on
the prior, the expected outcome conditional on the representative state, and the realized signal,
respectively. Therefore, instead of properly aggregating all the relevant information, participants
simply focus on a few cues—a defining feature of simplifying heuristics (Kahneman and Frederick,
2002; Shah and Oppenheimer, 2008} Gabaix, 2014).

5 Mechanism

The use of simplifying heuristics is commonly observed in belief-updating tasks in experimen-
tal settings. It is, however, more surprising that participants use different heuristics when solving
inference and forecast-revision problems, even though the information environment remains ex-
actly the same. In this section, we first develop a simple conceptual framework based on the
attribute substitution theory (Kahneman and Frederick, 2002) to account for these differences, and

then test the new predictions of the framework using additional treatments.

5.1 A similarity-based framework

5.1.1 Setup

Consider a decision-maker (DM) tasked with computing a target statistic y based on a de-
scription of the environment and the problem. For example, in our inference problem, the target
statistic y corresponds to Pr(6 = G|s(), while in our forecast-revision problem, it corresponds to
Es150] Y| The description includes other nontarget statistics and features pertinent to the calcula-
tion of y. For example, in our experiment, nontarget statistics include the numbers of good and bad
firms and the distributions of firm performance s conditional on firm quality. Features include both
additional information on the properties of the nontarget statistics, which we will detail later, as
well as other information about the data-generating process, such as the fact that firm performance
across months is i.i.d. conditional on firm quality.

The DM then applies a procedure to compute y based on her understanding of the problem.
However, the computed target statistic, denoted by 7, may be incorrect: the DM may either apply
an incorrect procedure, or apply the correct procedure but make implementation errors. We assume
that the DM, aware of her own potential inaccuracy (Enke and Graeber, 2023)), represents the
computed statistic as a noisy estimate of the true y: § = y + €,, where Var(e,) = 0.

If the DM is fully confident in her estimate, i.e., 05 = 0, then she will simply use ¢ as her

answer to the problem. However, if the DM is not fully confident, she may consider expanding the

39In the two problems related to priors, the statistic i corresponds to the two unconditional counterparts, Pr(0 = G)
and E[s;], respectively.
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set of candidate answers beyond y. The easiest way to do so is to look for two types of nontarget
statistics: first, those readily available in the description, and second, those easily computable from
the description. In our experiment, the first type includes statistics such as s and E[s|0 = G|, while
the second type includes Pr(§ = GG) and E[s] E] We denote the collection of both types of nontarget
statistics by x1, To, ..., Tj.

The DM understands that nontarget statistics are conceptually different from y. Therefore, she
mentally represents them also as noisy signals of the target statistic y: z; = y+e¢;, where Var(e;) =
o?,i=1,2,...,n. However, not all nontarget statistics are considered equally relevant. Building
on the growing literature on the role of similarity in attention and memory retrieval (Logan, 2021}
Bordalo et al.,[2023a; Jiang et al.,|2023), we also assume that the perceived mean-squared error af
decreases as x; becomes more similar to y; that is, if a nontarget statistic looks more similar to the

target statistic, the DM considers that statistic more relevant for inferring the target statistic.

5.1.2 Similarity

To structure the measurement of the similarity between statistics, note that each statistic—target

or nontarget—is characterized by three distinct dimensions of properties:

1. The statistical measure: this is either the expectation operator [E or the probability measure

Pr in our setting. More generally, it could be other measures such as quantiles or variance.

2. The essential variable or event: this is the variable or event the statistical measure operates

on.

3. The conditioning event: this is the event assumed to have occurred when calculating the

statistic.

For instance, for the statistic [E[s;|s], the statistical measure is the mathematical expectation E, the
essential variable is the forecast outcome s;, and the conditioning event is the realized signal s.
For the statistic Pr(# = G|so), the statistical measure is the probability measure Pr, the essential
event is # = (, and the conditioning event is sy. For unconditional statistics (statistics without a
conditioning event), we assume that they are conditioned on the full set; likewise, we reformulate
the statistic sg as E[sq|so]. We do not specify the exact form of the similarity function within each
dimension, other than assuming that two statistics are maximally similar in a dimension if they
are identical in that dimensionF_Z] Additionally, we assume that the overall similarity between two

statistics increases with their similarity in each dimension.

31In principle, the DM may also make mistakes in computing the second type of statistics. However, we abstract
away from such mistakes for simplicity in this model.
328ee Tversky| (1977) and [Nosofsky| (1992)) for models of similarity.
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Having calculated ¢y and the x;’s, all of which are internally represented as signals of y, the
DM chooses the one with the smallest perceived mean-squared error o2 as her final answer for
y. In formulating this decision process, we assume that the DM cannot further aggregate the
n + 1 statistics to form a better estimate of y. This assumption is psychologically realistic because
people often do not know how to aggregate multiple pieces of information to form an estimate
(Drugowitsch et al., 2016)). It is also without loss of generality because, if the DM can aggregate
the statistics, we can then redefine ¢ to be the newly-aggregated statistic and repeat the same

process.

5.1.3 Applications and predictions

The framework outlined above can explain the different modal answers uncovered in the in-
ference and forecast-revision problems. Consider a scenario where the realized signal is good
news, i.e., sg > H0. In Forecast Revision, the nontarget statistic associated with the exact rep-
resentativenss heuristic, E[s;|0 = G], shares two common dimensions with the target statistic
E[s1|so]: the statistical measure E and the essential variable s;. By contrast, in Inference, the
statistic E[s1]|0 = ] is less similar to the target statistic Pr(6 = G/|sy), as the statistical measure
and the essential variable/event are both different. Consequently, the DM is more likely to consider
E[s1|0 = G| as a relevant statistic and report it as an answer in Forecast Revision than in Inference.
Similarly, the nontarget statistic associated with the naive extrapolation heuristic, sy = E[so|s¢],
shares two common dimensions with the target statistic in Forecast Revision but only one with the
target statistic in Inference. This can explain why naive extrapolation is more prevalent in forecast-
revision problems. Lastly, similarity can also explain the prevalence of non-updates in both types
of updating problems: prior beliefs over states and prior outcome expectations share similarities
with their posterior counterparts, and non-updates occur when participants use the prior as the most

relevant statistic. These intuitions are summarized in Table [T1]

Table 11: Similarity between belief-updating questions and cues in Baseline

o Inference Forecast Revision )
Nontarget Statistic Behavior

Pr(state|realized price) [E|[price|realized price]

[E[price|representative state] Not similar Similar Exact representativeness
Realized price Not similar Similar Naive extrapolation
E[price] Similar Non-update
Pr(state) Similar Non-update
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Our framework also makes additional predictions: an increase (decrease) in the similarity be-
tween a nontarget statistic x; and the target statistic y elicited in the problem will make the DM
more (less) likely to use the nontarget statistic as her answer to the problem. To test these new
predictions, we conduct two new treatments where we manipulate the similarity between certain

nontarget statistics and the elicited target statistic.

5.2 Additional evidence on the similarity mechanism
5.2.1 Evidence from the More Similar treatment

In the first similarity treatment, which we call More Similar, we reframe the information envi-
ronment and the belief-updating problems to increase the similarity between the target statistic y
in Inference and the overreaction-inducing nontarget statistics. To do so, we reframe the signal and
the outcome variable as the firm’s profit in the current month and in the next month, respectively.
The state variable is framed as the firm’s profitability, defined as the long-run average of the firm’s
monthly profit, taking on values of either 0 or 100. Both the prior distribution of the state and
the signal distributions conditional on each state are the same as the corresponding distributions in
Baseline. The inference problem in this treatment asks about the firm’s expected profitability con-
ditional on the firm’s realized profit in the current month. Similar to Baseline, the forecast-revision
problem asks about the firm’s expected profit in the next month conditional on the same signal.

Table [12] summarizes the similarity properties between the nontarget statistics and the target
statistic in More Similar. Compared to Baseline, this treatment increases the similarity between
the target statistic elicited in the inference problem, here [E[profitability|realized profit], and two
nontarget statistics: E[profit|representative state| and the realized profit. The increase in similarity
comes from the fact that all these statistics can be represented as conditional expectations of profit-
related variables — assuming that “profit” and “profitability” are perceived as similar variables.
Thus, we predict that participants will be more likely to use these two nontarget statistics as their
answers to the inference problem, leading to a higher occurrence of exact representativeness and
naive extrapolation in Inference compared to Baseline.

Table [13|shows that, in More Similar, exact representativeness and naive extrapolation indeed
become modal behaviors in the inference tasks. This is in stark contrast to Baseline where these
two behaviors are almost non-existent in the inference tasks. This treatment also generates an
average updating bias that is qualitatively different from Baseline (see Table [T4)): the fractions
of underreacting and overreacting answers are close in Inference, and the average update leans
towards overreaction. In the Appendix, Table[AT10|shows in a regression that the inference-forecast
gap also becomes smaller but remains marginally significant (p = 0.079). Overall, the similarity

manipulation substantially increases belief updating in inference problems, although it does not
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Table 12: Similarity between the nontarget statistics and the target statistic in More Similar

o Inference Forecast Revision .
Nontarget statistic Behavior

E|[profitability |realized profit] E[profit|realized profit]

E[profit|representative state] Similar Similar Exact representativeness
Realized profit Similar Similar Naive extrapolation
E|[profit] Similar Non-update
E|[profitability] Similar Non-update

eliminate the inference-forecast gap

Table 13: Modes of behavior in More Similar

Mode Inference Forecast Revision
Non-update 36.3% 28.9%
Exact representativeness 15.3% 18.9%
Naive extrapolation 18.3% 26.9%

No inference-forecast Gap 4.0%

(excluding the other modes)

Unclassified 29.2% 25.5%
Observations 655 655

Notes: The criterion for an answer to be classified into a mode is the same as in Table [I0} The percentages are the
fractions of answers in each mode. Observations with the signal equal to 50 are excluded.

5.2.2 Evidence from the Less Similar treatment

In a second treatment, which we call Less Similar, we reframe the forecast-revision problem to
decrease the similarity between its target statistic and the overreaction-inducing nontarget statis-
tics. In this treatment, the state variable, the signal, and the inference problem remain the same

as in Baseline. We modify the forecast-revision problem as follows. After observing the realized

3Why is there a residual inference-forecast gap in More Similar? There is some suggestive evidence that the
temporal nature of the elicited statistic may go some way towards explaining it. More specifically, in Appendix D we
show that participants are less likely to overreact when they update their beliefs about outcomes realized before the
observed signal than when they update about outcomes to be realized in the future.
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Table 14: Aggregate patterns in More Similar

Classification Update

N=86, Obs=655 Underreaction Near-rational Overreaction Mean (s.e.)

Inference 50.7% 6.0% 43.4% 31.0 (4.0)
Forecast Revision 38.5% 4.9% 56.6% 38.0 (3.7)
Rational 23.9(.5)

Notes: The three columns under “Classification” present the percentages of answers classified as Underreaction,
Near-rational, and Overreaction. The last column shows average belief movements in the signal direction from the
(objective) priors and their rational benchmark. Observations with the signal equal 50 are excluded. Standard errors
are clustered by participant.

stock price growth, participants are asked about the probability that the firm’s revenue goes up next
month. The direction of the firm’s revenue movement is fully determined by the state—participants

are told that a firm’s revenue always goes up if the state is Good and down if the state is Bad.

Table 15: Similarity between the nontarget statistics and the target statistic in Less Similar

o Inference Forecast Revision .
Nontarget statistic Behavior

Pr(state|realized price) Pr(revenue up|realized price)

E|[price|representative state] Not similar Not similar Exact representativeness
Pr(revenue up|representative state) Not salient Not salient Exact representativeness
Realized price Not similar Not similar Naive extrapolation
El[price] Similar Non-update
Pr(state) Similar Non-update

Table examines the similarity properties between the nontarget statistics and the target
statistic in Less Similar. In this treatment, the heuristic of exact representativeness can arise
if participants use one of the following two nontarget statistics with values of either 100 or O:
[E[price|representative state|, the expected stock price growth conditional on the representative
state; and Pr(revenue up|representative state), the probability of the revenue going up conditional
on the representative state. Compared to Baseline, the first nontarget statistic E [price|representative state]
has now become less similar to the target statistic in Forecast Revision—Pr(revenue up|realized price)—
as the latter is a probability distribution over revenue movements. Although the second nontarget
statistic Pr(revenue up|representative state) appears similar to the target statistic, its values (100%

and 0%) are not explicitly stated in the description of the DGP and therefore not as salient as the
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other statistics in the information environmenth] Therefore, if similarity drives the use of heuris-
tics, exact representativeness should become less prevalent. Analogously, the realized signal (re-
alized stock price growth) is no longer similar to the target statistic Pr(revenue up|realized price),
and thus we predict naive extrapolation to show up less frequently.

Table |16/ shows the distribution of modal answers in Less Similar. Consistent with our predic-
tion, exact representativeness and naive extrapolation are much less prevalent in Forecast Revision
compared with Baseline. This change in modal behaviors supports our hypothesis that when a
nontarget statistic becomes less similar to the target statistic, people are less likely to use the non-
target statistic as their answer to the problem. We also find that the fraction of answers that satisfy
the no inference-forecast gap condition increases from 3.6% in Baseline to 11.8% in Less Simi-
lar. One possible explanation for this result is that the design of Less Similar makes it easier for
some participants to recognize the tight conceptual connection between the inference problems
and the forecast-revision problems. The changes in modal behavior also alter the updating bias in
the aggregate: Table[I7]shows that the inference-forecast gap almost completely vanishes in Less

Similar, and we obtain the familiar underreaction pattern even in the forecast-revision problems

Table 16: Modes of behavior in Less Similar

Mode Inference Forecast Revision
Non-update 31.7% 30.8%
Exact representativeness 9.0% 13.9%
Naive extrapolation 3.9% 3.6%

No inference-forecast Gap 11.8%

(excluding the other modes)

Unclassified 45.2% 41.5%
Observations 467 467

Notes: The criterion for an answer to be classified into a mode is the same as in Table [I0} The percentages are the
fractions of answers in each mode. Observations with the signal equal to 50 are excluded.

34Specifically, participants are told that “Good firms’ revenues grow every month. Bad firms’ revenues never grow
in any month.”

330ne may notice that in both Less Similar and Deterministic Outcome discussed in Section the signal and the
target statistic in Forecast Revision and are framed as two different variables (i.e., stock price and revenue). However,
forecast revisions underreact in Less Similar, but overreact in Deterministic Outcome. These different results can
also be reconciled by our framework. Unlike in Less Similar, the nontarget statistic [E[outcome|representative state]
remains a salient cue in Deterministic Outcome, and it is still similar to the target statistic in Forecast Revision—
E[outcome|realized signal]. As a result, exact representativeness remains a prevalent heuristic in Deterministic Out-
come.
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Table 17: Aggregate patterns in Less Similar

N=60, Obs=467 Classification Update

Underreaction Near-rational Overreaction Mean (s.e.)

Inference 64.7% 12.2% 23.1% 14.3 (1.6)
Forecast Revision 62.1% 12.8% 25.1% 13.6 (1.8)
Rational 23.1 (.6)

Notes: The three columns under “Classification” present the percentages of answers classified as Underreaction,
Near-rational, and Overreaction. The last column shows average belief movements in the signal direction from the
(objective) priors and their rational benchmark. Observations with the signal equal 50 are excluded. Standard errors
are clustered by participant.

6 Discussion

The behavioral economics literature has documented biased belief updating in various settings.
We show, experimentally, that the type of bias uncovered in a specific setting differs between
inference and forecast-revision problems. Through a series of experiments, we find that people do
not base their revised forecasts of future outcomes on their own inferences about the underlying
states. Instead, many individuals use distinct heuristics to solve the two problems, leading to more
overreaction in forecast revision than in inference.

In this section, we discuss primary considerations of external validity of our experimental re-
sults, provide suggestive evidence on the use of heuristics in the field, and highlight productive

paths for future research.

6.1 External validity

Our experiment documents a disconnect between inference and forecast revision, even in set-
tings where the relationship between states and forecast outcomes is simple and transparent. This
disconnect is likely to be even more pronounced in field settings, where the relationship between
fundamentals and outcomes is often less clear and complicated by various frictions. For example,
in corporate finance, revenue forecasts may depend on multiple factors, such as product popu-
larity, input costs, and competition. If a manager is uncertain about how all these factors jointly
determine revenue, then it is difficult to form revenue forecasts based on beliefs about these fac-
tors. In the setting of macroeconomic forecasts, the “fundamental state of the economy” is an

abstract construct difficult to quantify, let alone infer. These features of field settings make it more
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likely for forecasts to be disconnected from inference about fundamental states. Indeed, popular
corporate finance textbooks such as Welch| (2011) propose revenue forecast methods that are dis-
connected from input forecasts, and recent evidence shows that managers indeed use these methods
(Giustinelli and Rossi, [2023).

Our experiments also identify specific heuristics that people use in inference and forecast-
revision problems. Naive extrapolation and exact representativeness are primarily used in forecast
revision, contributing to overreaction in these tasks. Non-updates, a force of underreaction, are
prevalent in both inference and forecast revision. Of course, further research is needed to verify
the external validity of these heuristics and discover other decision rules that emerge in specific
settings (we provide suggestive evidence on this in the next subsection). However, we have several
reasons to believe that the heuristics we identify in our experiment will be important in many field
settings. The cues that these heuristics rely on, namely prior beliefs, past realizations and condi-
tional expectations, are often available in the field. Additionally, the factors driving the prevalence
of these heuristics, such as similarity, are also present in field settings. Finally, many field settings
are more complex than the lab, necessitating the use of simplifying heuristics. Below we fur-
ther discuss the specific kinds of complexity that may be conducive to each of the three identified
heuristics in field settings.

First, recent research has found that people tend to underreact to complex information (Gongalves
et al., 2021} Enke and Graeber, 2023} Liang, forthcoming). In field settings where new information
is hard to interpret, the prior belief is a natural anchor to fall back on. Consequently, non-updates
are likely to be prevalent in such settings with complex information.

Second, when the relationship between fundamental states and outcomes is unclear, it is easier
to mentally represent outcomes as a univariate time series. This representation naturally leads to
the rule of thumb of extrapolating past realizations of the outcome into the future. Giustinellr and
Rossi| (2023) document this heuristic in managerial forecasts. [Kohlhas and Walther| (2021)) find
that when forecasting of a variable, professional forecasters extrapolate from its past realizations,
even though they underreact to other information. For inference problems, this heuristic may not
be viable because oftentimes the fundamental states of an economy or a company do not have
observable past realizations. In addition, as long as the strength of the new signal is not too strong,
naively using past realizations to forecast future outcomes often leads to overreaction (Afrouzi
et al., 2023|).

Third, a large literature has documented the representativeness heuristic both in the lab and in
the field, which reflects people’s tendency to overweight the state that becomes more likely given
the new information (Kahneman and Tversky, 1972; Bordalo et al., 2018, 2019). The heuristic
of exact representativeness we identify is an extreme manifestation of this tendency where people

focus exclusively on the representative state. We suspect that the exact representativeness heuristic
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is likely to arise in complex field settings because research has shown that integrating consequences
from more than one states is difficult (Martinez-Marquina et al., 2019; Esponda and Vespa, [2023).
And when forecast revision is more complex than inference, people solving the former task will

be more likely to form beliefs based on one state.

6.2 Suggestive evidence from the field

To provide suggestive evidence on the relevance of belief-updating heuristics in the field, we
analyze individuals’ survey forecasts of two real economic variables: GDP growth rate and stock

market returns.

GDP growth rate forecasts of professional forecasters. We first analyze the Survey of Profes-
sional Forecasters (SPF), which is a quarterly survey of 20-100 professional forecasters conducted
by the Federal Reserve Bank of Philadelphia. Following Kohlhas and Walther (2021]), we focus on
forecasts of quarterly real GDP, which date back to 1968:Q4. Because we do not observe forecast-
ers’ mental models about how GDP growth depends on the underlying states of the economy, we
cannot identify the heuristic of exact representativeness. Nevertheless, because we observe prior
forecasts and past realizations of GDP growth, we can measure the prevalence of non-updates and
naive extrapolation. Let y; denote the year-over-year growth rate of real GDP in quarter ¢ and
let f;+y:+ denote forecaster i’s forecast of y,4 in quarter ¢. For each one-quarter-ahead forecast

fitYi+1, define

. fi,tytJrl - fi,tflyt+1
wl‘ﬂg = ,
Ye — fi,tflyt+1

which measures how close the forecast is to the most recent realized GDP growth rate y; relative

(€))

to the prior forecast f;;_11;+1. This measure is equal to 1 if a forecast naively extrapolates from
the most recent realization, and it equals O if the forecast sticks to the most recent prior.
Figureplots the histogram and kernel density of w; ; in the interval of [—1, 2]. The density has
a clear spike around 0, suggesting that a significant fraction of GDP growth rate forecasts do not
react to recent news — falling into non-updates. There is also an excess mass around 1, implying

naive extrapolation, although its magnitude is much smaller.

Stock market return forecasts of investors. Next, we analyze the UBS/Gallup survey for their
Index of Investor Optimism (110). The 110 is a monthly cross-sectional survey of 1000 investors
that ranges from 1998 to 2007. The survey asks respondents to forecast stock market returns in
the next 12 months. Again, by comparing this forecast (f; ;7 ++12) to the realized S&P 500 return
of the most recent year (1;_12,) and the prior forecast before that, we can identify the heuristics
of non-updates and naive extrapolation. Because the 11O is not a panel survey, we do not directly

observe a respondent’s prior forecast; therefore, we use the annualized S&P 500 return from month
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Histogram and Kernel Density of w, ,
SPF Year-over-year GDP Growth Rate Forecasts

Density

Figure 5: Histogram and kernel density for the weight on the most recent realization (relative to the
prior forecast) in the Survey of Professional Forecasters (SPF) annual GDP growth rate forecasts,
from 1968:Q4 to 2022:Q4. The width of both the bars and the kernel is %

t —60tot— 12 (r4—¢0+—12) as a proxy for the prior forecast. Formally, define

f’,tTt,t+12 — T't—60,t—12
wiy = 1 , (10)

Tt—12t — T't—60,t—12

which measures how close the forecast is to the most recent realized market return relative to the
proxied prior forecast. Similar to the analysis of the GDP growth rate forecasts, non-updates and
naive extrapolation are identified by this measure being close to 0 and 1, respectively.

Figure @plots the histogram and kernel density of w; ; in the interval of [—1, 2]. The distribution
has significant excess masses around both 0 and 1, suggesting that both non-updates and naive

extrapolation are important drivers of stock market return expectations.

6.3 Broader implications

Our study has implications for both theoretical and empirical research on belief-updating bi-
ases. One key message of this paper is that individuals can update their beliefs about different
variables differently even in the same information environment. This implies a need for both mod-
els that allow for internally inconsistent posterior beliefs about different variables and surveys that
elicit expectations for multiple variables. Our findings provide a potential resolution to an apparent
disconnect between two themes in the literature: the underinference observed in “bookbag-and-
poker-chip” experiments (Benjamin,, 2019) and the overinference assumed in models of diagnostic

expectations (Bordalo et al., 2018, 2019). Specifically, people may underinfer from new infor-
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Figure 6: Histogram and kernel density for the weight on the most recent realization (relative to
the prior forecast) in annual stock market returns forecasts in the UPS/Gallup Index of Investor
Optimism (I1O) survey from 1998 to 2007. The width of both the bars and the kernel is %

mation when they are asked about underlying states, but behave as if they are overinferring when
making forecasts as predicted by models of diagnostic expectations.

Our results also demonstrate the prevalence and heterogeneity of belief-updating heuristics,
highlighting their importance for aggregate beliefs. Future research could elicit belief-updating
heuristics in field settings, potentially through open-ended questions, and incorporate the hetero-

geneity of these heuristics into economic models.
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A Robustness of the Inference-Forecast Gap

In this section, we examine the properties of the inference-forecast gap in various subsamples
of the data.

A.1 A more “reasonable” subsample

We start by examining the inference-forecast gap in a subsample of the Baseline treatment that
satisfies two basic rationality criteria. In this subsample, we only keep observations whose forecast-
revision answer falls within [0, 100], the range bounded by the expected outcome of the Good state
and of the Bad state. Furthermore, we exclude observations in which either the inference update
or the forecast-revision update is negative; these behavior indicate that the participants’ reactions

to signals are in the wrong direction.

Table Al: Aggregate patterns in Baseline: subsample with “reasonable” updates

N=279, Obs.=1366 Classification Update

Underreaction Near-rational Overreaction Mean (s.e.)

Inference 54.5% 17.9% 27.7% 17.7 (.9)
Forecast Revision 42.4% 9.1% 48.5% 24.3 (1.1)
Rational 23.3(.3)

Notes: The first three columns present the percentages of answers classified as Underreaction, Near-rational, and
Overreaction. The last column shows average belief movements in the signal direction from the (objective) priors and
their rational benchmark. Observations with the signal equal to 50, forecast-revision answers that are outside [0, 100],
or updates in the wrong direction are excluded. Standard errors are clustered by participant.

Table[AT|shows the results in this subsample. Although the average update in Forecast Revision
is close to rational, there is still more overreaction and less underreaction in Forecast Revision than
in Inference. The gap in updates between these two parts is significant, as is shown in a regression
analysis in Column (2) of Table [A6]
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A.2 Priors and signals

The inference-forecast gap exists in all the eight problems with different DGPs (see Table [A2).
Notably, the eight problems include DGPs with symmetric and asymmetric priors, indicating that
our result persists with and without the potential influence of base-rate neglect.

For the subsample with symmetric (objective) priors, we further examine how the inference-
forecast gap depends on the strength of the signal. We measure signal strength by the Bayesian
update it induces; the more a Bayesian agent moves her belief in response to the signal, the more
diagnostic it is about the underlying state. Table [A3] shows the results. Overall, there is a larger
inference-forecast gap when the signal is more diagnostic, but the gap emerges even for the weakest
signals.

Most participants report correct prior beliefs about the states and about the outcome in Inference
Prior and Forecast Prior, but small errors sometimes occur (see Figure [CI)). To control for the
impact of errors in priors on our result, we repeat the classification exercise for the subsample in
which the reported inference prior and forecast prior are both correct. The pattern in this sample,
shown in Table [A4] and in Column (3) of Table [A6] is similar: there is more overreaction and less

underreaction in Forecast Revision than in Inference.

A.3 Order between parts

The gap is also robust to different ordering of the five parts. Table |AS|compares the gap across
different orders and shows that there is a large and statistically significant gap for all three orders.
Comparing the inference answers under orders 12345 and 12534 with the forecast revision answers

under order 34125, our results also indicate that the gap persists in a between-participant analysis.

A.4 Participant characteristics

We examine the heterogeneity of the gap across participant characteristics, such as gender,
education, investment experience, familiarity with statistics and economics, and performance in
the comprehension questions. Table [A§] show regression results by interacting variables for these
characteristics with a Forecast Revision dummy. One notable result is that participants who pass
all comprehension checks in one pass exhibit less underreaction in Inference and less overreaction
in Forecast Revision, which leads to an inference-forecast gap that is only half as that of the other
participants. In addition, participants who report being familiar with economics or finance also
exhibit a smaller gap. These results suggest that better comprehension of the subject matter is

associated with a smaller inference-forecast gap.
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Table A2: Aggregate patterns in Baseline (by problem)

Classification Update

Underreaction Near-rational Overreaction Mean (s.e.)
Pr(G) =50% Inference 71.1% 19.8% 9.2% 18.7 (1.2)
=50 Forecast Revision 44.3% 12.1% 43.6% 31.2 (2.4)
(Obs. =273) Rational 359 (.8)
Pr(G) =50% Inference 68.2% 16.9% 14.9% 17.0 (1.2)
o =60 Forecast Revision 47.9% 6.5% 45.6% 28.6 (2.8)
(Obs. =261) Rational 31.8 (.8)
Pr(G) =50% Inference 64.8% 13.5% 21.7% 15.3 (1.1)
o=170 Forecast Revision 40.8% 7.1% 52.1% 29 (2.6)
(Obs. =267) Rational 27 (.8)
Pr(G) =50% Inference 64.7% 12.6% 22.7% 13.9 (1.2)
o =280 Forecast Revision 40.9% 4.5% 54.6% 34.1 (3.6)
(Obs. =269) Rational 25 (.8)
Pr(G) =50% Inference 50.6% 18.4% 31.1% 16.2 (1.1)
=90 Forecast Revision 36.7% 4.1% 59.2% 37.3(3.3)
(Obs. =267) Rational 21.8 (.7)
Pr(G) =50% Inference 51.3% 16.1% 32.6% 13.1(1.2)
o =100 Forecast Revision 32.2% 8.2% 59.6% 38.3 (3.5)
(Obs. =267) Rational 19.7 (.7)
Pr(G) =80% Inference 57.4% 13.3% 29.3% 10.6 (1.3)
o =100 Forecast Revision 38.1% 3% 58.9% 34.1 4.1)
(Obs. =270) Rational 12.8 (.6)
Pr(G) =20% Inference 58.1% 10.7% 31.1% 10 (1.5)
o =100 Forecast Revision 36.7% 5.6% 57.8% 29.2 (3.5)
(Obs. =270) Rational 12.2 (.5)

Notes: The first three columns present the percentages of answers classified as Underreaction, Near-rational, and
Overreaction. The last column shows average belief movements in the signal direction from the (objective) priors and
their rational benchmark. Observations with the signal equal to 50 are excluded. Standard errors are clustered by
participant.
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Table A3: Aggregate patterns in Baseline (by signal strength)

Signal Strength Classification Update

Underreaction Near-rational Overreaction Mean (s.e.)

Weakest Inference 47.7% 23.0% 29.3% 4.5 (.8)
(Obs. =239) Forecast Revision 48.1% 11.7% 40.2% 10.3 (1.5)
Rational 6.5(.2)
Weak Inference 59.4% 13.7% 26.8% 9.6 (.9)
(Obs. =313) Forecast Revision 44.4% 5.4% 50.2% 19.1 (2.1)
Rational 15.9 (.2)
Medium Inference 63.9% 10.4% 25.7% 15.1(1.1)
(Obs. =280) Forecast Revision 37.5% 5.0% 57.5% 33.4(2.7)
Rational 25.1(.1)
Strong Inference 65.0% 12.3% 22.7% 204 (1.4)
(Obs. =300) Forecast Revision 34.7% 4.0% 61.3% 49.6 (4.1)
Rational 344 (.2)
Strongest Inference 63.8% 25.1% 11.0% 25.8(1.4)
(Obs. =362) Forecast Revision 43.4% 11.0% 45.6% 39.2 (3.8)
Rational 44.6 (.2)

Notes: The first three columns present the percentages of answers classified as Underreaction, Near-rational, and
Overreaction. The last column shows average belief movements in the signal direction from the (objective) priors and
their rational benchmark. Observations with the signal equal to 50 or asymmetric (objective) priors are excluded. The
five categories for signal strength correspond to five intervals of rational updates: [0, 10), [10, 20), [20, 30), [30, 40),
and [40, 50]. Standard errors are clustered by participant.
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Table A4: Aggregate patterns in Baseline: subsample with correct priors

N=279, Obs.=1502 Classification Update

Underreaction Near-rational Overreaction Mean (s.e.)

Inference 57.7% 17.9% 24.4% 15.7 (.8)
Forecast Revision 43.7% 7.7% 48.6% 27.4 (2.3)
Rational 24.1 (.3)

Notes: The first three columns present the percentages of answers classified as Underreaction, Near-rational, and
Overreaction. The last column shows average belief movements in the signal direction from the (objective) priors and
their rational benchmark. Observations with the signal equal to 50 or with incorrect priors are excluded. Standard
errors are clustered by participant.

Table AS: Aggregate patterns in Baseline (by order between parts)

Classification Update

Underreaction Near-rational Overreaction Mean (s.e.)

Order: 12345 Inference 55.6% 17.5% 27.0% 15.6 (1.1)
(N =102) Forecast Revision 37.2% 7.3% 55.5% 35.1 (3)

(Obs. =779) Rational 22.8 (4)

Order: 12534 Inference 59.9% 16.0% 24.2% 14.5 (1.1)
(N =103) Forecast Revision 40.4% 5.2% 54.5% 32.4 (3.6)
(Obs. =795) Rational 23.0(4)
Order: 34125 Inference 69.1% 10.9% 20% 12.4 (1.5)
(N =174) Forecast Revision 42.1% 6.8% 51.1% 29.9 (4.5)
(Obs. =570) Rational 24.4 (.5)

Notes: The first three columns present the percentages of answers classified as Underreaction, Near-rational, and
Overreaction. The last column shows average belief movements in the signal direction from the (objective) priors and
their rational benchmark. Observations with the signal equal to 50 are excluded. Standard errors are clustered by

participant.
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Table A6: The inference-forecast gap in Baseline under various sample restrictions

Update
Full sample “Reasonable” updates Correct priors
(D 2) 3)

Forecast Revision 18.385"** 6.682*** 11.751

(2.279) (1.210) (2.530)
Rational Update 1.035* 0.578* 0.926"**

(0.069) (0.041) (0.074)
Problem FE Yes Yes Yes
Subject FE Yes Yes Yes
Observations 4288 2732 3004
R? 0.314 0.463 0.341

Notes: *, ** and *** indicate statistical significance at the 0.10, 0.05, and 0.01 levels, respectively. Standard errors
are clustered by participant. This table presents results for our Baseline treatment. Each observation corresponds
either to an inference answer or a forecast-revision answer. We define the dependent variable, Update, as the answer
minus the (objective) prior if the signal is greater than 50, and the opposite if it is smaller than 50. Rational Update is
the update prescribed by Bayes’ rule (and the Law of Iterated Expectations). Observations with the signal equal to 50
are excluded. In Column (2), based on the full sample, we further drop observations with the forecast-revision answer
outside the [0, 100] range and observations with at least one update that is in the opposite direction as the signal. In
Column (3), based on the full sample, we further drop observations with an incorrect answer for either Inference Prior
or Forecast Prior.

A.5 Framing

Finally, we show that the gap is robust to changing the framing of the signal and forecast
outcome. Specifically, in a subsample of the Baseline treatment, we frame the signal as the firm’s
revenue growth (rather than stock price growth); we find a quantitatively smaller but still significant
gap with this alternative framing. Table [A9]show these results in regressions.

A.6 Regression analyses
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Table A7: The inference-forecast gap in Baseline excluding modal behaviors

Update

Full sample & “Reasonable” updates &

excluding two modes excluding two modes

ey 2)

Forecast Revision 11.685*** -2.519**
(2.969) (1.115)
Rational Update 0.974*** 0.446***
(0.091) (0.049)
Problem FE Yes Yes
Subject FE Yes Yes
Observations 2844 1658
R? 0.321 0.498

Notes: *, ** and *** indicate statistical significance at the 0.10, 0.05, and 0.01 levels, respectively. Standard errors
are clustered by participant. This table presents results for our Baseline treatment excluding observations falling into
two types of modal behaviors: exact representativeness and naive extrapolation. Each observation corresponds either
to an inference answer or a forecast-revision answer. We define the dependent variable, Update, as the answer minus
the (objective) prior if the signal is greater than 50, and the opposite if it is smaller than 50. Rational Update is the
update prescribed by Bayes’ rule (and the Law of Iterated Expectation). Observations with the signal equal to 50
are excluded. In Column (1), based on the full sample, we exclude observations in which the inference answer or
the forecast revision answer is classified into one of two modes: exact representativeness and naive extrapolation. In
Column (2), we further drop observations with the forecast revision answer outside the [0, 100] range and observations
with at least one update that is in the opposite direction as the signal.
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Table A8: Heterogeneity of the inference-forecast gap across demographics

Update
Forecast Revision 30.942%"*
(3.849)
Male x Forecast Revision -5.152
(4.544)
College x Forecast Revision -2.804
(4.504)
Investor x Forecast Revision -2.310
(4.516)
Familiar with Stats x Forecast Revision -6.481
(5.080)
Familiar with Econ x Forecast Revision -6.117
(5.436)
High Comprehension X Forecast Revision -9.282**
(3.908)
Male 0.319
(1.354)
College -1.031
(1.447)
Investor 5.009"**
(1.569)
Familiar with Stats 2.634*
(1.531)
Familiar with Econ -1.360
(1.652)
High Comprehension 4.310"**
(1.514)
Rational Update 1.010™**
(0.068)
Problem FE Yes
Observations 4288
R? 0.151

Notes: *, ** and *** indicate statistical significance at the 0.10, 0.05, and 0.01 levels, respectively. Standard errors are clustered by participant.
This table presents results for our Baseline treatment. Each observation corresponds either to an inference answer or a forecast-revision answer. We
define the dependent variable, Update, as the answer minus the (objective) prior if the signal is greater than 50, and the opposite if it is smaller than
50. Rational Update is the update prescribed by the Bayes’ rule (and the Law of Iterated Expectation). Observations with the signal equal to 50 are
excluded. We define Male as 1 if the participant indicates their gender as Male; the base group is thus Female or Others. We define College as 1 if
the participant has a bachelor’s or postgraduate degree. We define Investor as 1 if the participant indicates that they have investments in stocks or
mutual funds. We define Familiar with Stats as 1 if the participant indicates that they are familiar with probability theory and statistics. We define
Familiar with Econ as 1 if the participant indicates that they are familiar with economics or finance. We define High Comprehension as 1 if the
participant correctly answers all the comprehension questions in one pass.
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Table A9: Heterogeneity of the Inference-Extrapolation Gap across alternative framing

Update
Stock Price x Forecast Revision 21.187***
(3.000)
Revenue x Forecast Revision 15.654***
(3.208)
Revenue 1.845
(1.396)
Rational Update 1.017***
(0.068)
Problem FE Yes
Observations 4288
R? 0.136

Notes: *, ** and *** indicate statistical significance at the 0.10, 0.05, and 0.01 levels, respectively. Standard errors
are clustered by participant. This table presents results for our Baseline treatment. Each observation corresponds either
to an inference answer or a forecast-revision answer. We define the dependent variable, Update, as the answer minus
the (objective) prior if the signal is greater than 50, and the opposite if it is smaller than 50. Rational Update is the
update prescribed by the Bayes’ rule (and the Law of Iterated Expectation). Observations with the signal equal to 50
are excluded. Here, we explore heterogeneity of the effects depending on whether we frame the signal as stock price
growth or revenue growth.
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Table A10: The inference-forecast gap across different treatments

Update
Baseline x Forecast Revision 18.385**
(2.201)
Deterministic Outcome x Forecast Revision 20.697**
(3.511)
Nudge x Forecast Revision 19.708***
(3.083)
More Similar x Forecast Revision 7.009*
(3.986)
Less Similar x Forecast Revision -0.665
(1.641)
Deterministic Outcome -0.881
(1.475)
Nudge -3.508**
(1.460)
More Similar 15.990***
(4.046)
Less Similar 0.169
(1.716)
Rational Update 1.029**
(0.055)
Problem FE Yes
Observations 9586
R? 0.139

Notes: *, ** and *** indicate statistical significance at the 0.10, 0.05, and 0.01 levels, respectively. Standard errors
are clustered by participant. In this table, we pool the data from our Baseline treatment, Deterministic Outcome
treatment, Nudge treatment, More Similar treatment, and Less Similar treatment. Each observation corresponds either
to an inference answer or a forecast-revision answer. We define the dependent variable, Update, as the answer minus
the (objective) prior if the signal is greater than 50, and the opposite if it is smaller than 50. Rational Update is the
update prescribed by the Bayes’ rule (and the Law of Iterated Expectation). Observations with the signal equal to 50
are excluded.
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Table A11: The inference-forecast gap in Binary Signal treatment

Update
Forecast Revision 3.632*

(1.992)
Rational Update 0.532**

(0.074)
Problem FE Yes
Subject FE Yes
Observations 2240
R? 0.204

Notes: *, ** and *** indicate statistical significance at the 0.10, 0.05, and 0.01 levels, respectively. Standard errors
are clustered by participnt. This table presents results for the Binary Signal treatment. Each observation corresponds
either to an inference answer or a forecast-revision answer. We define the dependent variable, Update, as the answer
minus the (objective) prior if the signal is up, and the opposite if it is down. The updates of forecast-revision answers
are normalized by Pr(up|G) — Pr(up|B) so that they are comparable to the inference updates. Rational Update is the
update prescribed by the Bayes’ rule.
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B Additional Analyses on Modes of Behavior

In this section, we provide additional analyses of the modes of behavior in Inference and Fore-

cast Revision in the Baseline treatment.

B.1 Problems with asymmetric priors

Table [B 1| quantifies the prevalence of the modal behaviors in problems with asymmetric priors.
The overall pattern is similar to that for problems with symmetric priors: non-updates are prevalent
in both Inference and Forecast Revision, while exact representativeness and naive extrapolation

show up almost exclusively in the latter.

Table B1: Modes of behavior in Baseline: subsample with asymmetric priors

Mode Criterion for answer Inference Forecast Revision
Non-update = prior 30.9% 18.1%
Exact Representativeness = 100 if sg > 50, = 0 if sy < 50 2.8% 15.9%
Naive Extrapolation = S 3.3% 9.8%
No Inference-Forecast Gap

inference = forecast revision 2.2%
(excluding the other modes)
Unclassified 62.2% 55.4%
Observations 540 540

Notes: The column titled “Criterion for answer” shows the criterion for an answer to be classified into a given mode.
Note that an answer may be classified into more than one mode. The percentages in the last two columns are the
fractions of answers in each mode in Inference and Forecast Revision in the Baseline treatment. Observations with the
signal equal to 50 are excluded.

In forecast-revision problems with symmetric priors, an alternative interpretation of answers
classified as exact representativeness is that participants form expectations solely based on the
ex-post more likely state. This interpretation is distinguishable from the representativeness inter-
pretation in problems with asymmetric priors. For example, consider a forecast-revision problem
in which the prior belief Pr(G) is 20% and the realized signal s is only slightly above 50. Because
the signal is good news, the representative state is G. However, because the signal contradicts the
prior and is relatively weak, the ex-post more likely state (judged from the participant’s own in-

ference) could still be B. Therefore, this problem allows us to differentiate whether participants,
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when revising forecasts, are more likely to focus exclusively on the representative state or the
ex-post more likely state.

We focus on a subsample of observations in which the objective prior is asymmetric, the re-
ported inference prior and forecast prior are both correct, the signal direction is opposite to the
prior direction, and both the inference answer and its rational benchmark are between the prior and
50. Within this subsample, five forecast-revision answers equal the expected outcome of the rep-
resentative state, whereas none equal the expected outcome of the ex-post more likely state. While
the sample size is too small to draw any definitive conclusion, the result nevertheless suggests that

participants are more likely to focus on the representative state when they revise forecasts.

B.2 Relaxing criteria for classification

Table B2] shows the prevalence of behavioral modes when we relax the classification criteria
to allow for errors within [—4, 4]. Compared to the results with strict classification criteria (Table
[10), the fraction of answers in each mode increases only slightly, and the overall qualitative pattern

remains the same.

B.3 Participant-part-level classification

To study the consistency of behavior within each participant, we conduct a classification ex-
ercise at the participant-part level. Specifically, a participant is classified into a type in a part
(Inference or Forecast Revision) if more than half of her answers in that part are classified into the
corresponding mode. Table [B3|shows the joint distribution of types across the two parts. The num-
bers of participants classified in the two parts are 73 and 105, and the marginal distribution of types
in each part resembles that of the answer-level classification. On the relationship between types in
the two parts, many participants are non-updaters in both parts. Meanwhile, participants classified
as exact representativeness and naive extrapolation in Forecast Revision are mostly unclassified in

Inference.

B.4 Modes of behavior in other treatments

Table |B4|presents results on the modal behaviors in Deterministic Outcome. The distribution of
modes is similar to Baseline. Non-updates are prevalent in both Inference and Forecast Revision,
while exact representativeness and naive extrapolation are only prevalent in the latter.

Table shows that the distribution of modals behaviors in Binary Signal are also similar to
those in Baseline. Non-updates are prevalent in both Inference and Forecast Revision. In Forecast

Revision, 17.4% of the answers equal the outcome probability of the representative state, which
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Table B2: Modes of behavior in Baseline with relaxed criteria for mode classification

Mode Criterion for answer Inference Forecast Revision
Non-update /2 prior 32.2% 22.8%
Exact Representativeness ~ 100 if sg > 50, =~ 0if s < 50 5.9% 21.0%
Naive Extrapolation SN 3.8% 12.1%
No Inference-Forecast Gap

inference ~ forecast revision 3.8%
(excluding the other modes)
Unclassified 54.9% 42.8%
Observations 2144 2144

Notes: The column titled “Criterion for answer” shows the criterion for an answer to be classified into a given mode.
The = sign means that the criterion allows for errors within [—4, 4]. Note that an answer may be classified into more
than one mode. The percentages in the last two columns are the fractions of answers in each mode in Inference and
Forecast Revision in the Baseline treatment. Observations with the signal equal to 50 are excluded.

constitutes the behavioral mode of exact representativeness. Very few answers are classified as
exact representativeness in Inference.

Table B6 presents the distribution of modal behaviors in Nudge. The fraction of non-updates
in Inference is 53.2%, a notable increase from the 29.7% in Baseline. However, the fraction of
non-updates in Forecast Revision remains roughly the same as in Baseline, as does the fraction of
answers classified as exact representativeness and naive extrapolation. In addition, the fraction of
answers that satisfy the no inference-forecast gap condition increases to 8.8% from the 3.3% in
Baseline, suggesting that Nudge induces a greater tendency to give internally consistent answers

to the two types of updating questions.
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Table B3: Joint distribution of Inference types and Forecast Revision types in Baseline

Exact Repre- Naive No Inference-
Inference type Non-update ~ep . Forecast Unclassified Total
sentativeness  Extrapolation
Forecast Revision type Gap
Non-update 22 1 1 0 24 47
Exact Representativeness 2 2 0 0 31 35
Naive Extrapolation 9 0 0 0 12 21
No Inference-Forecast Gap 0 0 0 2 0 2
Unclassified 33 0 1 0 140 174
Total 66 3 2 2 207 279

Notes: This table shows the number of participants that are classified into each type in Inference and Forecast Revision
in the Baseline treatment. Note that a participant may be classified into more than one type in a part.

Table B4: Modes of behavior in Deterministic Qutcome

Mode Criterion for answer Inference Forecast Revision
Non-update = prior 35.9% 22.5%
Exact Representativeness =100 if sg > 50, = 0 if 59 < 50 5.1% 20.8%
Naive Extrapolation = 5 3.9% 13.3%
No Inference-Forecast Gap

inference = forecast revision 4.6%
(excluding the other modes)
Unclassified 51.5% 42.0%
Observations 777 777

Notes: The percentages in the last two columns are the fractions of answers in each mode in Inference and Forecast
Revision in the Deterministic Outcome treatment. Observations with the signal equal to 50 are excluded.
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Table B5: Modes of behavior in Binary Signal

Part Mode Criterion for answer % of answers
No Inference-Forecast Gap
Both Equation ((7) 2.1%
(excluding the other modes)
Non-update Pr(0|sg) = Pr(0) 27.1%
Pr(G|so) = 100% if s = up
Inference Exact Representativeness 3.1%
Pr(G|sg) = 0if so = down
Unclassified 67.6%
Non-update Pr(s1]so) = Pr(s1) 19.8%
Forecast Pr(sy|so) = Pr(s1|G) if so = up
Exact Representativeness 17.4%
Revision Pr(s1|so) = Pr(s1|B) if so = down
Unclassified 60.6%
Observations 1120

Notes: The percentages in the last column are the fractions of answers in each mode for each part in the Binary Signal

treatment.
Table B6: Modes of behavior in Nudge
Mode Criterion for answer Inference Forecast Revision
Non-update = prior 53.2% 20.9%
Exact Representativeness = 100 if sg > 50, = 0if sy < 50 2.5% 18.0%
Naive Extrapolation = S 4.4% 8.8%
No Inference-Forecast Gap
inference = forecast revision 8.8%
(excluding the other modes)
Unclassified 32.8% 45.7%
Observations 750 750

Notes: The percentages in the last two columns are the fractions of answers in each mode in Inference and Forecast
Revision in the Nudge treatment. Observations with the signal equal to 50 are excluded.
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C Beliefs without realized signal

In this section, we present results from the parts of our experiment in which participants do not
see any realized signal: Inference Prior, Forecast Prior, and Expectation Formation. Figure
shows the distribution of answers in Inference Prior and Forecast Prior in the Baseline treatment.
The majority of answers are correct, with the fraction of correct answers larger under symmetric
priors. Participants are more likely to report incorrect priors in Forecast Prior than in Inference
Prior. There are no systematic patterns in the distribution of errors.

Like Forecast Prior, the Expectation Formation part asks about participants’ expectations of
the outcome without seeing any realized signal. The unique feature of this part, however, is that the
distribution over states in an expectation-formation problem for each participant is set to match the
posterior over states reported by this participant in the corresponding inference problem. Figure
[C2] shows how much expectation-formation answers deviate from the correct answers prescribed
by the LolE in the Baseline treatment. The errors are generally small and not large enough to

account for much of the inference-forecast gap.
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Figure C1: Distributions of answers in Inference Prior and Forecast Prior in Baseline

Notes: We winsorize the answers in Forecast Prior at 0 and 100 as in the figures.
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Average Deviations from Correct Answers
Expectation Formation Problems in Baseline
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Figure C2: Deviations from LolE in expectation-formation problems in Baseline

Notes: Standard errors are clustered by participant.
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D Additional evidence on timing as a complementary mecha-
nism

In this section, we explore the timing of when the elicited statistic is realized as a comple-
mentary mechanism for the inference-forecast gap. Note that, in all our treatments in the pa-
per, the states are determined before the signals are realized while the forecast outcomes will
only be realized in the future (i.e., after the signals). We hypothesize that the relative timing be-
tween the realization of states, signals, and outcomes may play a role in the higher prevalence
of overreaction-inducing heuristics (such as naive extrapolation) in Forecast Revision than in In-
ference, thus contributing to the inference-forecast gap. This conjecture builds on several earlier
papers that document a timing effect in decision-making under uncertainty. For example, Roth-
bart and Snyder (1970) and |[Heath and Tversky| (1991)) find that people are more willing to bet on
realized events than unrealized ones; |[Nielsen (2020) finds that people prefer earlier resolution of
uncertainty for realized events than for unrealized ones; and more relevant to our setting, Benjamin
et al.| (2017)) find that the gambler’s fallacy is more pronounced when people predict future coin
flips than when they predict past ones, suggesting different belief-formation processes for past and
future outcomes.

To test this timing-based mechanism, we run an additional treatment called 7iming in which we
manipulate the relative timing between signal realization and outcome realization. In Timing, par-
ticipants follow a randomly chosen firm for two consecutive months, labeled the “first month” and
the “second month.” We randomize participants into two different conditions, the Future condition
and the Past condition. In Future, the relative timing between signal and outcome realizations re-
mains the same as in Baseline: in each round, participants observe the firm’s stock price growth in
the first month, and then report either their updated beliefs about the states or their updated expec-
tations about the firm’s stock price growth in the second monthff] In the Past condition, however,
this relative timing is reversed: after entering the first month, participants are told that the firm’s
stock price growth in the first month has been determined but is not shown to them. Then, they
enter the second month and observe the firm’s stock price growth as a signal. Afterwards, they
report updated beliefs about the states and about the firm’s stock price growth in the first month.
Note that our design ensures that the Bayesian benchmarks (under the same signal) are always
exactly the same across all the problems in the two conditions.

In Table [DI] the results from Future replicate the results from Baseline: participants over-

whelmingly underreact to signals in inference problems and overreact to signals in forecast-revision

3To finish this round, participants then go through “the second month” where they are told that the firm’s stock
price growth in the second month has been determined but not shown to them. This makes sure that participants do
not receive any feedback throughout the rounds of the experiment.

61



problems. In Past, participants also underreact in inference problems, but the degree of overreac-
tion in “precast’-revision problems is much smaller: 53.9% of responses are classified as Over-
reaction, smaller than the corresponding fraction (64.0%) in Future (p = 0.06). Similarly, the
average update in Past (27.9) is also much smaller than the corresponding amount in Future (44.9;
p = 0.01). Table confirms, in a regression framework, that the inference-precast gap in Past is

statistically significantly smaller than the inference-forecast gap in Future.

Table D1: Aggregate patterns in Timing

Future Condition Classification Update
N=61, Obs.=470 Underreaction Near-rational Overreaction Mean (s.e.)
Inference 62.3% 12.8% 24.9% 14.0 (1.3)
Forecast Revision 30.0% 6.0% 64.0% 449 (5.1)
Rational 23.3(.6)
Past Condition Classification Update
N=59, Obs.=458 Underreaction Near-rational Overreaction Mean (s.e.)
Inference 65.7% 16.2% 18.1% 13.0 (1.4)
“Precast” Revision 40.4% 5.7% 53.9% 27.9 (4.0)
Rational 22.4 (.6)

Notes: We separately report results from the Future condition and the Past condition. The three columns under
“Classification” present the percentages of answers classified as Underreaction, Near-rational, and Overreaction. The
last column shows average belief movements in the signal direction from the (objective) priors and their rational
benchmark. Observations with the signal equal to 50 are excluded. Standard errors are clustered by participant.

Table D3] further shows that this reduction in the gap is at least partially driven by a decrease
in the prevalence of overreaction-inducing heuristics in precast revisions in the Past condition. For
example, naive extrapolation is significantly less likely to appear in precast revisions compared
with in forecast revisions (5.7% vs. 13.2%, p = 0.01); exact representativeness is also less likely
to appear in precast revisions, although the difference is not statistically significant (21.2% vs.
24.5%, p = 0.49).

While a deep dive into the cognitive foundation of the timing effect is beyond the scope of this
section, we do provide a conjecture about what could be driving it. Since a realized variable is
“set in stone,” people may find it more worthwhile to think through all the existing information

about it, form a prior belief, and let it “sink in.” Once a prior already sinks in, people will be less
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responsive to new information, which could be driven by confidence (Moreno and Rosokha, 2016)
or a preference for commitment (Falk and Zimmermann, |2018). This conjecture may also explain
other timing effects in the literature. For example, confidence in one’s belief is often associated
with higher willingness to bet (Ellsberg, |1961), which can explain the difference in risk aversion
between realized events than unrealized ones (Rothbart and Snyder, 1970; [Heath and Tversky,
1991). Additionally, the ex-ante eagerness to acquire information about realized uncertainty is
directly related to Nielsen’s (2020) result that people prefer this kind of uncertainty to be resolved
early. Finally, the conjecture may also speak to the asymmetry between forward- and backward-
looking gambler’s fallacy in Benjamin et al.| (2017)) because people who have formed a confident
prior about earlier coin flips are less likely to make (biased) inference about them based on new

information.
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Table D2: The inference-forecast gap across the two conditions in the 7iming treatment.

Dependent Variable: Update

Forecast Revision 30.943***
(5.105)
Past Condition x Forecast Revision -15.985**
(6.303)
Past Condition -0.124
(1.961)
Rational Update 1.148***
(0.105)
Problem FE Yes
Observations 1856
R? 0.207

Notes: *, ** and *** indicate statistical significance at the 0.10, 0.05, and 0.01 levels, respectively. Standard errors
are clustered by participant. This table presents results for our Timing treatment. Each observation corresponds either
to an inference answer or a forecast-revision answer. We define the dependent variable, Update, as the answer minus
the (objective) prior if the signal is greater than 50, and the opposite if it is smaller than 50. Rational Update is the
update prescribed by the Bayes’ rule (and the Law of Iterated Expectation). Observations with the signal equal to
50 are excluded. We compare the inference-forecast gap in the Future condition to the inference-forecast gap in the
Past condition: Since the Future condition is the omitted group, the coefficient before Forecast Revision measures the
inference-forecast gap in the Future condition, and the coefficient before Past Condition X Forecast Revision measures
the reduction in the inference-forecast gap from the Future condition to the Past Condition.
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Table D3: Modes of behavior in Timing

Future Condition Past Condition
Mode Inference Forecast Revision Inference “Precast” Revision
Non-update 28.3% 14.0% 28.2% 14.4%
Exact representativeness 3.2% 24.5% 1.3% 21.2%
Naive extrapolation 3.4% 13.2% 3.3% 5.7%
No inference-forecast Gap 5 6% 41%
(excluding the other modes)
Unclassified 62.6% 48.9% 63.1% 57.0%
Observations 470 470 458 458

Notes: We separately report results from the Future condition and the Past condition. The criterion for an answer
to be classified into a mode is the same as in Table [I0] The percentages are the fractions of answers in each mode.
Observations with the signal equal to 50 are excluded.
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