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Abstract

When an agent receives information generated by a source whose accuracy might
either be high or low, standard economic theory dictates that she update as if the source
has medium accuracy. In a lab experiment, I find that subjects’ updating behaviors
deviate from this benchmark. First, subjects under-react to informationwhen the source
is uncertain. Second, the under-reaction is more pronounced for good news than for bad
news. These two patterns, under-reaction and pessimism, are consistent with a theory
of belief updating where agents are insensitive and averse to compound uncertainty and
ambiguity. I also find that subjects’ reactions to information with uncertain accuracy
are uncorrelated with their evaluations of bets with uncertain odds. This suggests
that people have distinct attitudes toward uncertainty in information accuracy and
uncertainty in economic fundamentals. The experimental results are validated using
observational data on stock price reactions to analyst earnings forecasts, where analysts
with no forecast records are classified as uncertain information sources.

Keywords— Belief updating, ambiguity, compound risk, earnings forecasts

∗This study is approved by the Stanford IRB in Protocol 45930 and by theUCSB IRB in Protocol 2-18-0331.
All errors are mine. Acknowledgements to be added. First version: Jan 13, 2019.

†Graduate School of Business, Stanford University. Email: ycliang@stanford.edu.

1

mailto:ycliang@stanford.edu


1 Introduction
People often need to incorporate new information for decision-making when they are uncertain about
the accuracy of its source. For example, in response to a financial report issued by a new analyst,
investors need to decide how to adjust their portfolios, but they don’t know the analyst’s expertise.
When a patient hears about a health tip through the grapevine, she needs to decide whether to follow
the tip, but it could either originate from a doctor or simply be an unsubstantiated rumor. Politicians
often have to rely on media and polling agencies to learn about their constituents’ needs, but they
may not know the exact biases of these intermediaries.

Standard economic theory assumes that when the accuracy of information is uncertain, agents are
able to correctly deduce expected accuracy and update their beliefs solely based on that expectation.
As an example, consider a bet with two possible outcomes. The agent receives a prediction of the
outcome but she does not know its accuracy: the probability that the prediction is correct conditional
on the true outcome might either be 90% or 50%. The two possible levels of accuracy are equally
likely, and the true one is independent from the realization of the outcome. According to standard
theory, the agent is able to calculate that the prediction is correct 70% of the time in expectation, and
her belief about the bet should react to this prediction as if she knew with certainty that it is 70%
accurate.

1.1 Main results
Using both experimental data from the lab and observational data on stock price reactions to analyst
earnings forecasts, this paper provides the first evidence on how uncertainty in information accuracy
affects belief updating. In part of a lab experiment, I present subjects with bets and inform them
about the winning odds. I elicit subjects’ certainty equivalents (CEs) for each bet after they receive a
prediction of its outcome. I refer to a prediction as uncertain information if its accuracy might either
be high (ψh) or low (ψl), and I define its corresponding simple information as a prediction whose
accuracy is known to be the midpoint, (ψh + ψl)/2. When subjects receive uncertain information,
sometimes they know that the two possible accuracy levels are equally likely (compound information),
and other times they don’t know their relative likelihood (ambiguous information). Inmy experiment,
the effects of compound uncertainty and ambiguity turn out to be qualitatively similar, so I will refer
to them jointly using the generic term “uncertainty” and will not distinguish between them until the
end of this section.

The main experimental result concerns the marginal effects of uncertainty in information accu-
racy on posterior beliefs. Compared to the case of simple information, subjects’ beliefs move less
in the direction of the realized message when its accuracy is uncertain. In other words, uncertain
information leads to under-reaction. Moreover, reactions are more biased toward the direction of
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bad news. This suggests that uncertainty in information accuracy, on average, leads to pessimism in
posterior beliefs.

The same patterns also emerge when I examine stock market reactions to analyst earnings
forecasts. The forecast accuracy of financial analysts is more unpredictable if they don’t have a
proven forecast record for the stock. I find that in response to good news (upward forecast revisions)
issued by these analysts, the immediate stock price reactions are, on average, followed by larger
positive price drifts. This phenomenon implies that investors’ immediate reactions to good news are
less sufficient when the news is issued by analysts without records. In contrast, the sufficiency of
reactions to bad news does not depend on whether the issuing analyst has a forecast record or not.
These findings are consistent with my experimental results that people’s reactions to information
from unknown sources are less sufficient and more pessimistic, and they show that these phenomena
are present even in a high-stake, real-world environment.

1.2 Nature of the behavioral patterns
A related question which has been extensively studied is how people evaluate prospects when they
don’t know the probability over payoff-relevant states.1 For example, investors may need to evaluate
a complex financial asset when the distribution of its returns is difficult to know. The answer
to this question can shed light on the nature of people’s reactions to information from unknown
sources because in both problems, decision-makers face uncertainty about the probability over the
state space. Following a canonical experimental design in this literature,2 in a separate part of
my experiment, I elicit subjects’ CEs of uncertain bets, which are bets whose winning odds might
either be high (ph) or low (pl). The results exhibit two patterns. First, compared to simple bets
whose odds are known to be the midpoint, (ph + pl)/2, evaluations of uncertain bets change less
as ph and pl change. The literature refers to this pattern as uncertainty-induced insensitivity, and
it captures the psychological intuition that people internalize the odds less as they become more
complex. Second, the lower winning probability is weighted more in the evaluation of uncertain
bets than the higher one. This pattern is called uncertainty aversion, and it reflects the tendency
to be over-pessimistic in face of compound uncertainty or ambiguity. These two patterns are
empirical regularities in people’s uncertainty attitudes and have been subjects of theorization.3 To

1The question was raised in Keynes (1921), Knight (1921), and Ellsberg (1961), and has since received
immense theoretical attention. For theoretical surveys, see Machina and Siniscalchi (2014) and Gilboa and
Marinacci (2016). Trautmann and van de Kuilen (2015) provides a survey of empirical evidence.

2See e.g. Halevy (2007); Chew et al. (2017).
3Empirical studies that show evidence for uncertainty-induced insensitivity and uncertainty aversion

include Abdellaoui et al. (2011, 2015); Dimmock et al. (2015); Baillon et al. (2018); Anantanasuwong et al.
(2019). Theoretical models that capture these two patterns include Ellsberg (2015); Chateauneuf et al. (2007);
Gul and Pesendorfer (2014).
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parsimoniously captures uncertainty-induced insensitivity and uncertainty aversion, I introduce and
axiomatize an ε-α-maxmin expected utility model of preference. This model is also convenient for
structural estimation, which helps organize the experimental results.

The problem of learning from unknown information sources differs from evaluating bets with
uncertain odds in two ways. First, it involves the arrival of new information. Second, the uncertainty
is in the accuracy of information sources as opposed to economic fundamentals. Both differences
could potentially alter the effects of uncertainty on behavior.

Uncertainty attitudes in problems with belief updating With the arrival of new informa-
tion, uncertainty attitudes could manifest themselves in a number of different ways. For example,
consider the main part of my experiment where subjects evaluate a bet after receiving a prediction
whose accuracymight either be high or low. Suppose a subject is averse to uncertainty in information
accuracy. Then, one possibility is that the uncertainty aversion leads her to be pessimistic about
the outcome of the bet conditional on the prediction. (The belief updating rule that leads to this
possibility is known as Full Bayesian updating,4 which is different from Bayesian updating in the
classical sense.) Alternatively, the subject may be pessimistic about the ex-ante value of information
(Dynamically consistent updating).5 A third possibility is that after hearing the prediction, the
subject no longer considers one of the accuracy levels because she deems it unlikely (Maximum
likelihood updating).6

I derive the empirical implications of these (and other) possibilities, and Full Bayesian updating
coupled with uncertainty-induced insensitivity and uncertainty aversion stands out as being most
in line with the experimental and stock market evidence I describe above. Intuitively, under Full
Bayesian updating, uncertainty averse agents over-weight the possibility that uncertain information
has low accuracy when they hear good news. On the contrary, the high accuracy is over-weighted
when the realized news is bad. This asymmetry leads to pessimism about the value of the bet after
hearing the news. On the other hand, uncertainty-induced insensitivity causes agents to neglect the
content of information from unknown sources, leading to under-reaction. In addition, Full Bayesian
updating also has predictions on belief updating with uncertain priors and simple information, and
the results from another part of my experiment are broadly consistent with those predictions.7

4Jaffray (1992); Pires (2002); Eichberger et al. (2007).
5Hanany and Klibanoff (2007).
6Dempster (1967); Shafer (1976); Gilboa and Schmeidler (1993).
7Full Bayesian updating predicts that if an agent is insensitive and averse to uncertainty in priors, then

when she updates from uncertain priors, she will under-weight them (“base-rate neglect") and be pessimistic
about the bet’s value. I find evidence that uncertain priors lead to more pessimism but not more base-rate
neglect. This is perhaps because base-rate neglect is already severe even when priors are known.
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Attitudes toward uncertain information accuracy vs. attitudes toward uncertain eco-
nomic fundamentals People’s attitudes toward uncertain information accuracy may be different
from their attitudes toward uncertain economic fundamentals. To investigate this possibility, I com-
pare lab subjects’ reactions to uncertain information and their evaluations of bets with uncertain
odds, both in the aggregate and at the individual level. In the aggregate, I estimate a representative-
agent model based on the ε-α-maxmin preference and Full Bayesian updating. The estimates show
that the representative agent is insensitive and averse to both uncertainty in information accuracy
and uncertainty in the odds of bets. The degrees of insensitivity and aversion are also similar across
different kinds of uncertainty.8

One might be inclined to conclude from the aggregate results that uncertainty attitudes toward
information sources and economic fundamentals are similar. However, the similarity completely
breaks down when we focus on individual subjects. At the individual level, I construct tests for
the correlations between attitudes toward different kinds of uncertainty. These tests are valid under
a variety of preference models and updating rules. The results show that there is almost zero
correlation between attitudes toward uncertainty in information accuracy and uncertainty in the odds
of bets. This stark finding suggests that knowing a person’s preference between simple and complex
assets does not help predict how she reacts differently to information from known and unknown
sources. This result resonates with existing evidence showing that uncertainty attitudes vary with
issues and are susceptible to framing (e.g., Heath and Tversky, 1991; Fox and Tversky, 1995).

1.3 Compound information vs. ambiguous information
So far, I have not distinguished between compound and ambiguous information. While both
kinds of information are complex, only ambiguous information has the additional feature that
the probability distribution over possible accuracy levels is not explicitly specified. Since in real
life, most information sources exhibit varying degrees of both features, comparing the effects of
compound and ambiguous information helps disentangle the roles of complexity and “unknown
unknowns” in generating belief updating biases.

At the aggregate level, structural estimation using the experimental data shows that the represen-
tative agent is insensitive and averse to both compound uncertainty and ambiguity. Moreover, the
magnitudes of insensitivity and aversion are larger for ambiguous information than for compound
information. These results suggest that both complexity and “unknown unknowns” play a role in
the effects of uncertain information on belief updating. At the individual level, in more than one
third of all cases, a subject has the same reaction to compound and ambiguous information.9 Taken

8One exception is that the degree of insensitivity to ambiguous odds of bets is imprecisely estimated in
belief updating tasks with ambiguous priors and simple information.

9Similar results also hold for the relationship between compound and ambiguous economic fundamentals,
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together, these findings imply that in order to mitigate the belief updating biases induced by uncertain
information accuracy, the meanings of messages should not only be precisely specified, but also be
presented in a simple way.

1.4 Related literature
Theoretical studies have proposed various criteria for belief updating under compound uncertainty
and ambiguity (Dempster, 1967; Shafer, 1976; Jaffray, 1992; Epstein and Schneider, 2003; Hanany
and Klibanoff, 2007; Cheng and Hsiaw, 2018; Gul and Pesendorfer, 2018). Many theories differ
in their predictions on the marginal effects of uncertainty on posterior beliefs, which allows me
to empirically distinguish between them. Several experimental papers have studied learning with
uncertain priors. Corgnet et al. (2012), Ert and Trautmann (2014), and Moreno and Rosokha (2016)
study choices between bets after sampling from urns with uncertain compositions.10 They find that
beliefs converge to the true distribution with sampling, but results on the rate of convergence and the
evolution of ambiguity attitudes are mixed. Ngangoué (2018) elicits CEs of ambiguous bets with
and without additional simple information in a between-subject design, and she finds support for
recursive smooth preferences (Klibanoff et al., 2009). In contrast to these earlier studies, the main
focus of my paper is on uncertain information accuracy.11

Two previous experimental projects study phenomena related to uncertain information accuracy.
Fryer et al. (2018) find that subjects tend to update their beliefs about political issues in the directions
of their priors after reading ambiguous research summaries. In a social learning experiment,
De Filippis et al. (2018) present subjects with two pieces of information: a private signal about
the true state and the belief of a predecessor (who only has a private signal). When the private
signal is absent or confirms the predecessor’s belief, subjects account for the predecessor’s belief
in a Bayesian manner. In contrast, when the private signal contradicts the predecessor’s belief,
subjects under-weight the latter. The authors interpret their result using a model where subjects
treat their predecessors’ beliefs as ambiguous information. My experiment differs from these two
studies in that I examine the effects on belief updating when information accuracy changes from
being objectively simple to objectively uncertain. In addition, the context of my experiment rules
out explanations that resort to motivated reasoning.

which confirm previous findings in Halevy (2007); Abdellaoui et al. (2015); Chew et al. (2017); Gillen et al.
(forthcoming).

10In these papers, the (simple) information pertains to the true composition of the urn, which is different
from my experiment where the information is about the realized outcome (“the ball drawn from the urn").
For a similar design with natural events instead of artificial urns, see Baillon et al. (2017).

11Cohen et al. (2000) and Dominiak et al. (2012) study dynamic Ellsberg three-color experiments where
subjects choose between bets before and after one color is ruled out. They find that most subjects’ behavior
is consistent with Full Bayesian updating, though their experiments do not elicit point beliefs.
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Two recent experimental studies investigate certain aspects of ambiguous information. In a con-
temporaneous project, Epstein and Halevy (2019) study belief updating with ambiguous information
when the prior is compound. Using a between-subject design, they find that more subjects violate
the martingale property of belief updating12 under ambiguous information than under a piece of
simple information (which is not the symmetric reduction of the ambiguous information). More
recently, Shishkin rO Ortoleva (2019) focus on ambiguous neutral information (i.e. information
whose accuracy is a midpoint-preserving spread of 50%) and study both belief updating and the
demand for information. In contrast to these two studies, my experiment allows for the separate
identification of under-reaction and pessimism caused by uncertain information accuracy. Also, I
consider both compound and ambiguous information.

Two empirical studies find patterns in real-world settings which can be explained by certain
models of learning from ambiguous information. Epstein and Schneider (2008) calibrate the US
stock price movement in the month after 9/11 to a model of asset pricing with ambiguous news and
find that the fit is superior to a Bayesian model. Kala (2017) studies how rainfall signals affect Indian
farmers’ agricultural decisions and find support for Hansen and Sargent (2001)’s model of robust
learning. These papers do not study how the degree of uncertainty in information accuracy affects
the sufficiency of reactions to news, which is what I focus on in the analysis of stock price reactions
to analyst earnings forecasts.

There is a vast literature on stock market reactions to analyst reports in accounting and finance.13
Gleason and Lee (2003) find that stock price under-reaction is less pronounced for analysts who are
recognized by the Institutional Investor magazine. Zhang (2006) shows that the market under-reacts
more to forecast revisions on firms whose fundamentals are harder to learn. Complementary to
these studies, my paper focuses on the uncertainty of analysts’ accuracy, and I find that it exacerbates
under-reaction only for good news. Mikhail et al. (1997) and Chen et al. (2005) study how analysts’
experience and forecast records affect the market’s immediate reactions to their forecasts, but they
don’t study the sufficiency of these reactions.

More broadly, my paper is related to the fast-growing literature on belief updating biases, such
as under-reaction (e.g., Edwards, 1968; Möbius et al., 2014) and asymmetric updating (e.g., Eil and
Rao, 2011;Möbius et al., 2014; Coutts, 2019; Barron, 2019). Benjamin (2019) surveys this literature
and concludes that evidence on the directions of belief updating biases is mixed. Although most
experimental studies on these topics focus on people’s reactions to objectively simple information,
due to inattention or bounded rationality, people may still perceive the information as uncertain to
varying degrees. If this is true, then my paper suggests that perceived uncertainty in information
accuracy may be a moderator for these belief updating biases. Indeed, in a subsequent experiment,

12Loosely speaking, the martingale property of belief updating states that there exists a probability distri-
bution over messages such that for every event, the expectation of posteriors equals the prior.

13For surveys, see Kothari et al. (2016); Bradshaw et al. (2017).
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Enke and Graeber (2019) find evidence that supports this conjecture.14

1.5 Paper structure
The rest of the paper is organized as follows. Section 2 describes the design of all parts of
the lab experiment. Section 3 presents experimental results on the evaluation of bets without
new information and introduces the ε-α-maxmin EU model of uncertainty attitudes. The main
experimental results are in Section 4. First, I discuss theories of learning with uncertain information
accuracy that combine the ε-α-maxmin model with a belief updating rule. Then, to test these
theories, I present the experimental results on belief updating with uncertain information. As a
validation, in Section 5, I briefly go through the implications of these belief updating rules in a
setting of belief updating with uncertain priors and summarize the corresponding experimental
evidence. To measure and compare the aggregate-level effects of different kinds of uncertainty,
I introduce and estimate the structural model in Section 6. The individual-level relation between
attitudes toward uncertain information accuracy and uncertain economic fundamentals is analyzed
in Section 7, whereas the relation between attitudes toward compound uncertainty and ambiguity is
discussed in Section 8. Section 9 presents supporting evidence using observational data on stock
market reactions to analyst earnings forecasts. Section 10 concludes.

2 Experimental design

2.1 Tasks
Each session of the experiment consists of 29 rounds. Each round is framed as a race between a
Red horse and a Blue horse with no tie. In each round, there are two payoff-relevant states, Red and
Blue, corresponding to the color of the winning horse. A bet on a state pays out $20 if it is the true
state, and $0 otherwise. At the end of each round, subjects report their certainty equivalents (CEs)
of the Red bet and the Blue bet in an incentive-compatible mechanism. Before reporting their CEs,
subjects may receive a piece of additional information, framed as an analyst report, about the true
state. The message they receive is either “Red horse won” (red) or “Blue horse won" (blue). The
uncertainty across rounds is independent.

The 29 rounds are grouped into 5 parts, which are summarized in Table 2.1. In the three parts
with “simple priors", subjects know with certainty the prior probability distribution over the states,
i.e. the winning odds of the two horses. For example, subjects may be told that the Red horse has

14Enke and Graeber (2019) find in a part of their experiment that subjects’ posterior beliefs are more
compressed toward the prior (50%, 50%) if the information accuracy is compound as opposed to simple. Under
their belief elicitation mechanism, this phenomenon is consistent with both under-reaction and pessimism.
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Part Prior Information accuracy
1 Simple No information
2 Simple Simple
3 Simple Uncertain
4 Uncertain No information
5 Uncertain Simple

Table 2.1: Summary of parts

70% chance of winning and the Blue horse has 30% chance. What differ across these three parts
are whether subjects receive additional information about the true state before they report their CEs
for the bets and, if they do, whether the accuracy of information source is uncertain. In Part 1,
subjects do not receive additional information, whereas in Parts 2 and 3, they do. In Part 2, subjects
know the accuracy level of information, denoted by ψ, with certainty. For instance, subjects may
be told that the analyst report they receive is 70% accurate. This means that conditional on the true
outcome of the horse race, the analyst report is correct 70% of the times and wrong 30% of the
times. In Part 3, subjects know that the information is at one of two possible accuracy levels, ψh
or ψl (ψh > ψl), but don’t know which one. For example, they may be told that the analyst report
is either 90% accurate or 50% accurate. In half of the rounds, subjects know that the two possible
accuracy levels are equally likely to be the true one. I refer to this situation as subjects receiving
compound information. In the other rounds, the distribution over the two possible accuracy levels is
unknown, and I will refer to the information as ambiguous information. The realization of the true
accuracy level is independent from the realization of the state.

In Parts 4 and 5, subjects are told in each round that the states are distributed according to one
of two possible priors. For example, the prior probability that Red is the true state is either 50% or
90%. In half of the rounds, subjects know that the two possible priors are equally likely to be true
(“compound prior”), whereas in the others, they don’t know the distribution over them (“ambiguous
prior”). Subjects don’t receive additional information about the true state in Part 4, whereas in Part
5 they do. Moreover, the additional information in Part 5 is simple, i.e. its accuracy level is known
with certainty.

Table 2.2 shows the priors and information that subjects may face in the experiment. For
example, if in a round the prior of Red is 70% and the prior of Blue is 30%, then the prior of the
round is written as (70%, 30%). The priors of the three rounds in Part 1 are (50%, 50%), (60%,
40%) and (70%, 30%). In Part 4, subjects are presented with the corresponding compound and
ambiguous priors listed in the second column. In each of the other parts, subjects face four possible
combinations of priors and information accuracy, both for compound uncertainty and for ambiguity.
The four possible combinations correspond to the four rows in the table.
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Simple prior Uncertain prior Simple information
accuracy

Uncertain information
accuracy

(50%, 50%) (90%, 10%) or (10%, 90%) 70% 90% or 50%
(60%, 40%) (90%, 10%) or (30%, 70%) 60% 90% or 30%

(70%, 30%) (90%, 10%) or (50%, 50%) 50% 90% or 10%
70% 90% or 50%

Table 2.2: Priors and information accuracy

2.2 Logistics
The experiment was conducted at the Econ Lab at University of California, Santa Barbara on May
9th and 14th-16th, 2018. A total of 165 subjects were recruited using ORSEE (Greiner, 2015) to
participate in 11 sessions which lasted on average 90 minutes. Subjects watch instructional videos
at the outset of the experiment and also before each part. After each video, screenshots and scripts
are distributed to subjects in paper for their reference. Before proceeding to the first round of
each part, subjects answer several comprehension questions to demonstrate that they understand
the instructions. Both the videos and the comprehension questions take extra care to making sure
that subjects understand the statistical meaning of priors and information accuracy, though there
is no mention of any updating rules. The experiment ends with an unincentivized survey. The
instructional videos, their scripts and sample screenshots of the rounds can be found on my website.

2.3 Payment
Each subject receives a $5 show-up fee and, if they finish the experiment, a $10 completion fee.
The amounts of bonus they receive depend on their decisions in the experiment. Throughout the
experiment, each subject reports CEs for 29 × 2 = 58 bets. To eliminate income effect, only one
randomly selected bet counts for bonus. The CE for a bet is elicited using the Becker-DeGroot-
Marschak (BDM) mechanism (Becker et al., 1964). Specifically, a price between $0 and $20 is
randomly selected. If a subject’s CE for the bet that counts for bonus is higher than the price, then
her bonus will equal the payout of that bet. Otherwise, her bonus will equal the price. In the first
two sessions, the original version of BDM mechanism was implemented and subjects were asked to
write down their minimum selling prices for each bet on paper.15 In the other 9 sessions, the BDM
mechanism was implemented through a multiple price list programmed using oTree (Chen et al.,
2016), where a subject makes a series of binary choices between receiving the bet and receiving a
sure amount of money incrementing from $1 to $19 with a step of $1. The CE is inferred to be the

15A total of 38 observations from 3 subjects in these two sessions are missing.
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minimum sure amount that the subject chooses over the bet.16 Throughout the 29 rounds, subjects
do not receive any feedback.

2.4 Implementation of randomization
To encourage subjects to consider each bet and each price in isolation (Baillon et al., 2015) and
also to establish the credibility of the random incentive mechanism, the randomization is conducted
publicly before the first round of each session. Specifically, each subject draws two envelopes from
two bags, one from each. One envelope contains the bet that will count for bonus and the other
contains the price of the bet (row in the multiple price list).

In each round, each binary event is determined by a random draw from a deck of ten cards
numbered from 1 to 10, one card for each number. To determine the true state, a small number on
the drawn card corresponds to Red being the true state and a large number corresponds to Blue. The
threshold number is determined by the true prior over the states. For example, suppose the true prior
of Red is 70%. Then the Red horse wins if a number between 1 and 7 is drawn, and the Blue horse
wins if the number is between 8 and 10. In rounds with additional information, the analyst report is
correct if the number drawn from a second deck of cards is small, and wrong if the number is large.
The threshold number corresponds to the true accuracy level of the report. Another deck of cards is
used in rounds with two possible priors. If the two priors are equally likely, then which prior is the
true prior depends on whether the draw from this deck is between 1 and 5. If the distribution over
the two priors is unknown, then the threshold number that determines the true prior is not disclosed
to the subjects.17 When the information accuracy is uncertain, the true accuracy is determined in a
similar fashion.18 19 After drawing the cards, the experimenter announces the realized message to
the subjects. Then the subjects report their CEs for the Red bet and Blue bet. In the first two sessions,
how the cards determine the events is explained in details to the subjects in the instructional videos.
In the other sessions, only the determination of states is explained in details in the videos. Subjects
are told that the realized message, true prior, and true accuracy level of the information are similarly
determined by random draws from separate decks of cards. They are referred to the printed scripts
for more details if they are interested.

16Multiple switching between the left and right sides of the list is not allowed.
17To mitigate the concern that the experimenter manipulates the threshold number ex post, subjects are told

that the threshold number is printed on a paper and they are welcome to inspect it after the experiment.
18Instructions are framed such that the uncertainty about true prior or the uncertainty about the accuracy

level of the information is always resolved first.
19In the first two sessions, to determine the true prior or the true accuracy level of information, a card is

drawn from a deck of eight cards instead of ten. The uncertainty is resolved by whether the number drawn is
even or odd.
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2.5 Order between rounds
The order between the five parts varies across sessions. Within Parts 3, 4 and 5, the rounds
with compound uncertainty are grouped in one block and the ones with ambiguity are grouped in
another. The order between compound and ambiguous blocks also varies across sessions. Table
B.2 summarizes the orders in the 11 sessions. In Appendix B.2, I show that order effects are not a
driving force of the main empirical results.

Within each part (or each block in Parts 3, 4 and 5), the order between rounds is fixed, which is
shown in Table B.3.

3 Evaluating bets with uncertain odds
Before discussing the main results of this paper on learning from unknown information sources,
I first present experimental evidence on how people evaluate bets with unknown odds in a setting
without belief updating. This evidence helps motivate a model of uncertainty attitudes, which is the
basis of most theories of belief updating with uncertain information accuracy.

3.1 Model setup
Consider an agent choosing between a bet and a sure amount of utils. There are two payoff-relevant
states, G and B. The bet pays out 1 util if G occurs and 0 util otherwise. I define the evaluation
of the bet as the amount of utils u such that the agent is indifferent between the bet and u. Let
p be the probability of G. Then, a standard expected utility (EU) agent will evaluate the bet by
u = p · 1 + (1 − p) · 0 = p. If the state G has a compound probability, i.e. its probability is either
ph or pl, each with equal chance, then a standard EU agent will evaluate the bet by u = ph+pl

2 . The
same evaluation also applies to the case of ambiguous probability if a standard EU agent treats ph
and pl symmetrically under the principle of insufficient reason.

3.2 Experimental results
Figure 3.1 and Table 3.1 show the CEs of simple, compound and ambiguous bets in Parts 1 and 4
of my experiment where subjects do not receive additional information.20 The mean CEs of simple

20Since the red and blue bets in a (50%, 50%) horse race are both bets with 50% chance of winning, I take
the average of the CEs of the two bets to be the CE of a 50%-odds bet. In the simple round whose prior is
(50%, 50%) and in its two corresponding uncertain rounds, 82% of the subjects report the same CE for the
red and blue bets, which is in line with results in previous studies. See Table C. VI of Chew et al. (2017) for
a meta-study. Moreover, the deviations from color neutrality are not significantly different from zero.
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Figure 3.1: CEs of bets without additional information

Notes: The figure shows the mean CEs of bets without belief updating. Each group of bars represents the
three tasks that share the same (midpoint) odds of winning. Error bars represent +/- one standard error.

bets are lower than their expected values except when the odds of winning is 30%. This is consistent
with Prospect Theory (Kahneman and Tversky, 1979).

My main focus, however, is on the comparison between CEs of uncertain bets and simple bets.
The mean CEs of uncertain bets are lower than their simple counterparts for medium and high odds.
Nevertheless, the gaps vanish for bets with low odds (30% for ambiguous bets, 30% and 40% for
compound bets). These results are consistent with two common patterns in people’s attitudes toward
compound uncertainty and ambiguity: uncertainty aversion and uncertainty-induced insensitivity.21
With uncertainty aversion, the lower winning probability is weighted more in the evaluation of
uncertain bets than the higher one. This reflects the tendency to be over-pessimistic in face of
compound uncertainty or ambiguity. With uncertainty-induced insensitivity, evaluations of bets
change less as the odds change if the odds are uncertain. This captures the intuition that people
internalize the odds less as they become more complex.

3.3 A model of uncertainty attitudes
Previous studies have proposed a wide variety of models to account for uncertainty attitudes that
deviate from standard expected utility theory.22 In most parts of this paper, instead of trying to
distinguish among these models, I will use a simple model that parsimoniously captures uncertainty

21For similar empirical patterns, see Abdellaoui et al. (2011, 2015); Dimmock et al. (2015); Baillon et al.
(2018); Anantanasuwong et al. (2019).

22Gilboa and Marinacci (2016); Machina and Siniscalchi (2014) provide surveys of this literature.

13



(Midpoint) Odds of winning Type of bet Mean CE Standard error N
simple 6.45 0.330 165

30% compound 6.47 0.321 165
ambiguous 6.57 0.313 165
simple 7.49 0.300 165

40% compound 7.53 0.331 165
ambiguous 7.05 0.310 164
simple 9.10 0.293 162

50% compound 8.61 0.335 164
ambiguous 8.41 0.343 163
simple 10.89 0.308 165

60% compound 9.96 0.355 165
ambiguous 8.90 0.359 164
simple 13.09 0.282 165

70% compound 12.02 0.327 165
ambiguous 11.53 0.333 165

Table 3.1: Bets without additional information

Notes: This table compares the mean CEs of bets with simple, compound and ambiguous odds without
additional information. The last two columns are p-values for two-sided paired t-tests.

aversion and uncertainty-induced insensitivity.
There are two events, E and Ec. The probability of E is either ph or pl, with ph ≥ pl. The

probability of Ec is the complement. An act assigns a simple lottery to each event. I identify the
simple lotteries assigned to E and Ec by their (von Neumann-Morgenstern) utility indices, denoted
by u1 and u2, respectively. Define the following function:

W(x, y; ε, α) := (1 − ε)[(1 − α)x + αy] + ε · 0.5.

Then the utility of the act for an ε-α-maxmin agent is
W(ph, pl; ε, α) · u1 + (1 −W(ph, pl; ε, α)) · u2, if u1 ≥ u2

W(pl, ph; ε, α) · u1 + (1 −W(pl, ph; ε, α)) · u2, if u1 < u2
,

where ε and α are constants in [0, 1]. In the setting of my experiment where the payoff of the bet is
either 1 util or 0 util, an agent with ε-α-maxmin (expected utility) preference evaluates the bet by

u = W(ph, pl; ε, α)

14



Figure 3.2: Illustration of the ε-α-maxmin EU preference

Notes: The figure illustrates how an ε-α-maxmin EU agent forms the CE of a bet with uncertain odds. Similar
to a standard EU agent, she behaves as if she forms a subjective odds of the bet and then applies her risk
preference to form the CE. Unlike a standard EU agent, the subjective odds of an ε-α-maxmin EU agent is a
weighted average between ph , pl , and 50%.

and apply her risk preference to translate utils to certainty equivalents. (See illustration in Figure
3.2.)

The ε-α-maxmin preference can be interpreted as follows. When the probability distribution
on the two events is uncertain, the agent puts ε weight on a baseline probability, which I assume
to be the symmetric and maximally uncertain distribution (50%, 50%).23 The rest of the weight is
split between the more optimistic belief and the more pessimistic one in a generically asymmetric
way. The two parameters flexibly capture rich patterns of attitudes toward uncertainty, from full
uncertainty seeking (α = 0) to full uncertainty aversion (α = 1), from full sensitivity (ε = 0) to full
insensitivity (ε = 1).

This model is closely related to many classes of models in the literature. It can be written
in the functional form of Choquet expected utility (Schmeidler, 1989) (See Appendix C.1). Also,
it generalizes the Maxmin expected utility preference (Gilboa and Schmeidler, 1989) and the α-
maxmin expected utility preference (Olszewski, 2007). As a result, standard expected utility is also
nested as a special case (ε = 0 and α = 0.5). Similar two-parameter models have been proposed
(Ellsberg, 2015; Chateauneuf et al., 2007) and fitted to data in experimental settings that are different
frommine (Abdellaoui et al., 2011; Dimmock et al., 2015).24 In Appendix D, I provide an axiomatic
foundation of the ε-α-maxmin preference. I will also discuss two alternative models, the smooth

23I consider two alternative models in Appendix B.5. In one model, the weight on (50%, 50%) scales with
ph − pl . In the other, the baseline probability on which the agent puts ε weight is a free parameter.

24In these model, agents face a continuum of possible probability distributions. Hence, the insensitivity
parameter is often interpreted as capturing the range of distributions that agents deem possible. This inter-
pretation does not fit my experimental setting as subjects are explicitly informed that an uncertain bet only
has two possible winning probabilities.
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model (Klibanoff et al., 2005) in Appendix E and Segal (1987, 1990)’s recursive model in Appendix
F.

4 Belief updating with uncertain information accuracy
In this section, I analyze theories and experimental results on belief updating with uncertain infor-
mation accuracy, which is the main subject of interest in this paper. The theories are based on the
ε-α-maxmin EU model, which was introduced in the previous section.

4.1 Theories
As in the previous section, consider the choice between a sure amount of utils and a bet that pays
out 1 util under state G. The probability of G is p with certainty. Before an agent makes the choice,
she receives an additional piece of binary information m ∈ {g, b}. If the accuracy of the information
is Pr(g |G) = Pr(b|B) = ψ with certainty, then after observing the realized message, a Bayesian
EU agent will evaluate the bet by the Bayesian posterior belief on G: u(g) = PrBayes(G |p, g, ψ) :=

pψ
pψ+(1−p)(1−ψ) , u(b) = PrBayes(G |p, b, ψ) := p(1−ψ)

p(1−ψ)+(1−p)ψ .
In a belief updating problem where the information accuracy is uncertain, the choice between

the bet and a sure amount of utils conditional on information depends on the agent’s uncertainty
attitudes and her belief updating rule. In an uncertain information problem, the prior probability of
G is still simple, but the accuracy of additional information is either ψh or ψl. The two levels of
accuracy satisfy 0 < ψl < ψh < 1 and ψh + ψl ≥ 1. In the rest of this section, I will apply several
belief updating rules to the ε-α-maxmin preference and compare their predictions. (See illustration
in Figure 4.1.) Specifically, I will examine, under each updating rule, how choices given uncertain
information deviate from those given simple information. I will also investigate how uncertainty
attitudes (i.e. ε and α) affect these choices. Proofs of results in this subsection are in Appendix C.2.

4.1.1 Full Bayesian updating

In an uncertain information problem, Full Bayesian updating dictates that the evaluation of a bet
conditional on good news is given by

u = PrBayes(G |p, g,W(ψh, ψl; ε, α))

and that conditional on bad news is

u = PrBayes(G |p, b,W(ψl, ψh; ε, α)).
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Figure 4.1: Illustration of theories of updating with uncertain information
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These formulas can be derived from Eichberger et al. (2007) and they admit a simple interpretation.
The agent behaves as if she perceives the information accuracy to be a weighted average of ψh, ψl
and 50%, and she updates by applying the Bayes’ rule to the prior and the subjective accuracy. The
weight on 50% is always ε, which is responsible for the degree of under-reaction to news. The rest
of the weight is split between ψh and ψl, and their relative weights depend on which accuracy level
leads to a more pessimistic Bayesian posterior given the realized message. Intuitively, an agent who
is averse to uncertainty in information accuracy (α > 0.5) worries that good news’ accuracy is low
but bad news has high accuracy. An extreme form of pessimism can occur if (1−α)ψh+αψl < 50%.
In this case, even the evaluation conditional on good news is (weakly) lower than the prior p.

The following proposition summarizes the predictions of Full Bayesian updating.

Proposition 1 Suppose that an ε-α-maxmin agent uses Full Bayesian updating. In an uncertain
information problem,

1. if ε = 0 and α = 0.5, then her conditional evaluations coincide with the Bayesian evaluations
conditional on simple information with accuracy level ψh+ψl

2 ;

2. as α increases, the conditional evaluations decrease;

3. as ε increases, the conditional evaluations become closer to p.

4.1.2 Dynamically consistent updating

In an uncertain information problem, under Dynamically consistent updating (Hanany andKlibanoff,
2007), the evaluation of the bet conditional on message m ∈ {g, b} is given by

u = PrBayes(G |p,m,max{W(ψh, ψl; ε, α), 50%}).

Unlike Full Bayesian updating, under Dynamically consistent updating, the as-if subjective
information accuracy is the same regardless of the realized message. Specifically, the weight on
50% is always ε and the share of the rest of the weight assigned to ψl is α so long as the as-if
information accuracy is still greater than 50%.

The interpretation of this formula is as follows. An agent who uses Dynamically consistent
updating evaluates her contingent plan of choices before the realization of information. If the agent
is averse to uncertainty in information accuracy (α > 0.5), then she will prefer to under-react to
information so that her ex-ante payoff is less dependent on the realization of that uncertainty.

Proposition 2 Suppose an ε-α-maxmin agent uses Dynamically consistent updating. In an uncer-
tain information problem,
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1. if ε = 0 and α = 0.5, then the conditional evaluations coincide with the Bayesian evaluations
conditional on information with accuracy level ψh+ψl

2 ;

2. as either ε or α increases, the conditional evaluations become closer to p.

4.1.3 Maximum likelihood updating

In an uncertain information problem, Maximum likelihood updating (Gilboa and Schmeidler, 1993)
selects only the accuracy level(s) that is mostly likely given the realized message. Then the agent
conducts Full Bayesian updating using the selected accuracy level(s). Since messages that confirm
the prior are more likely to be accurate than not, agents update too much to them. By a similar logic,
they update too little to messages that go against the prior. Formally, if p , 50%, then the evaluation
of the bet conditional on good news is given by

u =


PrBayes(p, g, ψh), if p > 50%

PrBayes(p, g, ψl), if p < 50%

and that conditional on bad news is

u =


PrBayes(p, b, ψl), if p > 50%

PrBayes(p, b, ψh), if p < 50%
.

If p = 50%, then the predictions of Maximum likelihood updating coincide with those of Full
Bayesian updating.

The following proposition summarizes the properties of Maximum likelihood updating.

Proposition 3 Suppose an ε-α-maxmin agent uses Maximum likelihood updating. In an uncertain
information problem,

1. If p , 50%, the conditional evaluations of the bet exhibit confirmation bias relative to
those conditional on simple information with accuracy ψh+ψl

2 . The measures of uncertainty
attitudes, ε and α, do not affect the conditional evaluations.

2. If p = 50%, conditional evaluations under Maximum likelihood updating coincide with those
under Full Bayesian updating.

4.1.4 Summary of theoretical implications

Consider an ε-α-maxmin agent whose attitudes toward uncertain information fall in the typical
range: ε > 0 and α > 0.5. Taking Bayesian learning with the corresponding simple information as
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Theory Aversion (α > 0.5) Insensitivity (ε > 0)
Full Bayesian updating Pessimism Under-reaction to news
Dynamically consistent updating Under-reaction to news Under-reaction to news

Maximum likelihood updating p , 50%: Confirmation bias (α and ε are irrelevant)
p = 50%: coincide with FBU

Table 4.1: Summary of theoretical predictions in uncertain information problems

the benchmark, Table 4.1 summarizes the predictions of the updating rules I have discussed so far.
The left panel of Figure 4.2 illustrates what the three main predictions, under-reaction, pessimism,
and confirmation bias, each implies about the comparisons between belief updating with simple and
uncertain information. Under-reaction and pessimism have the same directional predictions for good
news but opposite for bad news. For neutral news, i.e. messages whose (midpoint) accuracy is 50%,
under-reaction predicts that uncertain information accuracy does not have an effect on posteriors
whereas pessimism predicts that posteriors conditional on uncertain information will be lower. The
directional prediction of confirmation bias depends on the prior: the posteriors conditional on
uncertain information are higher given high priors and lower given low priors.

If ε = 0 and α = 0.5, then all theories except Maximum likelihood updating coincide with the
benchmark.

4.2 Experimental results
Table 4.2 and the right panel of Figure 4.2 show the CEs of simple bets conditional on good news,
bad news, and neutral news.25 Additional statistical tests, including within- and between-subject
t-tests, are in Table B.5. Perhaps the most salient empirical pattern is that the mean CEs conditional
on compound and ambiguous good news are lower than the mean CE conditional on their simple
counterpart for every combination of prior and (midpoint) information accuracy. This is consistent
with the predictions of both under-reaction and pessimism, but not consistent with confirmation bias.

For bad news, the mean CEs conditional on compound and ambiguous news are higher compared
to simple news in 3 out of 5 comparisons, and they are slightly lower or mixed in the other two.
Since under-reaction and pessimism generate opposite direction predictions for bad news, the results
can be explained by a combination of the two.

The mean CEs of a 70%-odds bet conditional on compound and ambiguous neutral news are
significantly lower than that conditional on simple neutral news. For a 30%-odds bet, the mean
CEs conditional on compound and ambiguous neutral news are statistically indistinguishable from

25Throughout the paper, I refer to the message “Red horse won" as good news for the Red bet and bad
news for the Blue bet, and vice versa for the message “Blue horse won." In this section, I refer to any message
whose (midpoint) accuracy is 50% as neutral news.
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that conditional on simple neutral news. Again, the results are consistent with the combination of
under-reaction and pessimism, but not with confirmation bias. Taken together, the empirical patterns
resemble the prediction of Full Bayesian updating the most.

To further demonstrate the under-reaction and pessimism caused by uncertain information ac-
curacy, for each uncertain information round I define absolute pessimists/optimists and absolute
under-/over-reactors, two pairs of mutually exclusive categories, and then show that the former in
each pair prevails.

First, I introduce some notations. Let CE(p,m, ψh or ψl) denote the conditional CE of a bet in
an uncertain information round, where p is the prior of the bet, m ∈ {g, b} indicates whether the
realized message is good or bad news for this bet, and the third argument represents the possible
accuracy levels of the information.26 Analogously, let CE(p,m, ψ) be the conditional CE of a bet in
a round with simple prior and simple information. Then, if the midpoint information accuracy in an
uncertain information round is not 50%, define the uncertainty premium of a bet in this round as

Pm(p,m, ψh or ψl) := CE(p,m, ψh + ψl
2
) − CE(p,m, ψh or ψl).

Note that Pm(p,m, ψh or ψl) may be missing for some subjects because calculating it requires that
CE(p,m, ψh+ψl

2 ) be available in the data. In the rounds where the information accuracy is either 90%
or 10%, since all news is neutral, I do not distinguish between good and bad news. The uncertainty
premium of a bet in these rounds is defined as

Pm(p,−, 90% or 10%) := CE(p,m′, 50%) − CE(p,m, 90% or 10%),

where m and m′ are the realized messages in the respective rounds.
Now I can define the categories, which are summarized in Table 4.3. A subject is an absolute

pessimist in an uncertain information round if the uncertainty premiums of the two bets in this round
are both weakly positive and at least one of them is strictly positive. Analogously, a subject is an
absolute optimist if the two uncertainty premiums are both weakly negative and at least one is strictly
negative.

In an uncertain information round where the midpoint information accuracy is not 50%, if a
subject’s uncertainty premium for the bet that receives good news is weakly positive, her uncertainty
premium for the other bet is weakly negative, and at least one of the two is not zero, then I call this
subject an absolute under-reactor. If, on the contrary, the bet that receives good news has a weakly
negative uncertainty premium, the other one has a weakly positive premium, and at least one is not
zero, then this subject is called an absolute over-reactor. In rounds where all news is neutral, I do
not classify subjects into these two categories.

26I suppress notations for compound vs. ambiguous uncertainty when there is no risk of confusion.
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Figure 4.2: Simple priors with simple and uncertain information

Notes: The left panel of this figure illustrates what under-reaction, pessimism, and confirmation bias each
predicts about the comparisons between belief updating with simple and uncertain information. (Neutral news
refers to any message whose (midpoint) accuracy is 50%.) The right panel compares the mean CEs of simple
bets conditional on simple, compound and ambiguous information in the experiment. Each group of bars
correspond to a combination of prior and information. For example, “odds=30%, accu=70%” in the upper
right graph represents tasks where the prior is 30% and the information is good news with 70% (midpoint)
accuracy. Error bars represent 95% confidence intervals.
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Prior
(Midpoint)
Information
accuracy

Good/Bad
news

Type of
information

Mean
conditional

CE

Standard
error N

simple 10.80 0.645 54
30% 70% good compound 9.48 0.603 44

ambiguous 10.35 0.739 47
simple 10.19 0.533 91

40% 60% good compound 8.96 0.491 85
ambiguous 10.10 0.490 60
simple 12.51 0.362 164

50% 70% good compound 11.99 0.349 164
ambiguous 10.88 0.346 165
simple 12.45 0.391 73

60% 60% good compound 12.10 0.463 80
ambiguous 9.61 0.452 105
simple 14.74 0.369 111

70% 70% good compound 13.45 0.397 121
ambiguous 13.74 0.381 118
simple 5.70 0.368 111

30% 70% bad compound 5.38 0.355 121
ambiguous 5.48 0.345 118
simple 6.89 0.400 73

40% 60% bad compound 7.89 0.490 80
ambiguous 5.95 0.390 105
simple 6.47 0.345 165

50% 70% bad compound 6.99 0.306 163
ambiguous 6.93 0.314 165
simple 7.46 0.496 91

60% 60% bad compound 7.48 0.431 85
ambiguous 9.58 0.474 60
simple 7.20 0.672 54

70% 70% bad compound 9.70 0.651 44
ambiguous 9.34 0.720 47
simple 7.10 0.361 163

30% 50% compound 7.50 0.374 164
ambiguous 7.29 0.334 164
simple 10.88 0.336 163

70% 50% compound 10.34 0.349 164
ambiguous 10.21 0.369 163

Table 4.2: Simple bets with additional information

Notes: This table compares the CEs of simple bets conditional on simple, compound and ambiguous infor-
mation. 23



Bet that receives good news

Uncertainty
premium + -

Bet that receives
bad news

+ Absolute pessimist Absolute over-reactor
- Absolute under-reactor Absolute optimist

Table 4.3: Classification of subjects in an uncertain information round

Notes: This table summarizes the classification of subjects in an uncertain information round. To be classified
into any of the four categories, the uncertainty premium of at least one bet in the round needs to be non-zero.
For rounds whose midpoint information accuracy is 50%, I do not classify subjects as absolute over-/under-
reactors.

Table 4.4 shows the percentages of each category in each round with uncertain information
accuracy. In every round, there are more absolute under-reactors than absolute over-reactors. In
all but one rounds, there are more absolute pessimists than absolute optimists. In aggregate, the
percentage of absolute under-reactors is significantly higher for both compound and ambiguous
information rounds. The aggregate percentage of absolute pessimists is also higher than that of
absolute optimists, and the difference is significant for ambiguous information rounds.27

In summary, my experimental results show that uncertainty in the accuracy of information leads
to under-reaction and pessimism. These two patterns are most consistent with the prediction of
uncertainty-induced insensitivity and aversion together with Full Bayesian updating.

27In Appendix B.1, I consider two alternative categories: absolute confirmation bias and absolute contra-
diction bias. These two categories overlap with absolute over-/under-reactors, as an absolute over-reactor in
a round with a confirmatory message is classified into the category of absolute confirmation bias. In all but
one round, there are fewer absolute confirmation-biased subjects than absolute contradiction-biased subjects.
This result together with the comparisons between mean CEs of bets suggests that uncertainty in information
accuracy does not lead to prevalent confirmation bias.
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Prior
Midpoint

Information
accuracy

Type of
information

Absolute
pessimists

Absolute
optimists

p-value
%(Abs. pess.)
=%(Abs. opt.)

Absolute
under-reactors

Absolute
over-reactors

p-value
%(Abs. under.)
=%(Abs. over.)

N

(50%, 50%) 70% Ambiguous 31.5% 19.4% 0.029 44.2% 18.2% 0 165
(60%, 40%) 60% Ambiguous 31.0% 18.3% 0.128 43.7% 18.3% 0.007 71
(70%, 30%) 70% Ambiguous 25.5% 23.4% 0.768 40.4% 19.1% 0.008 94
(70%, 30%) 50% Ambiguous 25.5% 19.7% 0.31 - - - 137
Aggregate Ambiguous 28.5% 20.1% 0.01 43.0% 18.5% 0
(50%, 50%) 70% Compound 21.2% 25.5% 0.425 43.0% 22.4% 0.001 165
(60%, 40%) 60% Compound 27.4% 23.6% 0.586 36.8% 24.5% 0.107 106
(70%, 30%) 70% Compound 27.6% 16.3% 0.057 39.8% 26.0% 0.059 123
(70%, 30%) 50% Compound 27.7% 19.7% 0.172 - - - 137
Aggregate Compound 25.6% 21.5% 0.164 40.4% 24.1% 0

Table 4.4: Classification of subjects in each uncertain information round

Notes: This table shows the percentages of subjects that are classified into the four categories in each uncertain information round. Only subjects who face comparable
belief updating problems in the uncertain information round and its corresponding simple information round are counted. In the rows under “Aggregate", I calculate the
percentage of instances subjects are classified into each category, aggregated across the four or three rounds that are relevant for that category. The p-values are computed
using Pearson’s chi-square goodness-of-fit tests.
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5 Belief updating with uncertain priors
The belief updating rules studied in the previous section also make predictions on how people
updating their beliefs when priors are uncertain. In this section, I briefly summarize these predictions
and the experimental results on belief updating with uncertain priors and simple information. Details
are relegated to Appendix A.

In an uncertain prior problem, the prior probability of G is either ph or pl with pl < ph, but the
accuracy of additional information is known to be ψ ≥ 50%. Under both Full Bayesian updating
and Dynamically consistent updating, an ε-α-maxmin agent’s evaluation of the bet conditional on
message m ∈ {g, b} is

u = PrBayes(G |W(ph, pl; ε, α),m, ψ).

The uncertainty-induced insensitivity parameter ε is responsible for the degree of under-weighting
of priors (“base-rate neglect"), and the uncertainty aversion parameter α corresponds to pessimism.

Under Maximum likelihood updating, the conditional evaluations are u = PrBayes(ph, g, ψ) for
good news and u = PrBayes(pl, b, ψ) for bad news. This leads to over-reaction to news. For neutral
news (ψ = 50%), Maximum likelihood updating coincides with the other two updating rules.

The experimental result shows that posterior beliefs are more pessimistic if the priors are
uncertain. This pattern is demonstrated both by comparing average conditional CEs of uncertain
and simple bets and through subject classification. However, I do not find evidence for either under-
weighting of priors or over-reaction to news. The overall result is in line with the prediction of Full
Bayesian updating and Dynamically consistent updating coupled with uncertainty aversion.28

6 Structural analysis
In the previous sections, I show how different kinds of uncertainty directionally affect CEs of bets
in a variety of comparisons. Next, I will integrate the comparisons using a representative-agent
model and obtain quantitative measures of the effects of different kinds of uncertainty. To ensure
that the structural estimates indeed capture the marginal effects of uncertainty, I need to adapt the
previously-introduced theoretical framework so that the empirical model allows for nonstandard
risk preferences and inherent belief updating biases that are unrelated to ambiguity and compound
uncertainty.

28One potential reason for why there isn’t evidence for under-weighting of priors when priors are uncertain
is that even when priors are simple, base-rate neglect is already quite severe. (See Section 6.2.) As a result,
there may not be enough room for additional base-rate neglect to be detected when priors become uncertain.
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6.1 Risk preference

For risk preference, I use Prelec (1998)’s two-parameter function to model the CE of a bet with
winning odds p and stake $20:

CE(p) = MPrelec(p) := $20 · exp(−b(−log(p))a).

This model allows an agent to exhibit risk aversion/pessimism (b) and insensitivity (a) even when
the decision problem does not involve compound uncertainty or ambiguity.29 I assume that new
information, compound uncertainty, and ambiguity do not affect an agent’s risk attitudes (a and b),
so they affect the CE of a bet only through their effects on the (subjective) winning odds of the bet. In
other words, I assume that agents form a subjective winning odds and then apply the risk preference
MPrelec(·) to obtain the CE.

6.2 Inherent belief updating biases

Subjects’ belief updating behaviors may deviate from the Bayes’ rule for reasons unrelated to com-
pound uncertainty and ambiguity. Figure B.1 and Table B.6 show the CEs of simple bets conditional
on simple information and compare them to their Bayesian benchmarks whenever available.30 For
every task where the prior is not 50%, the mean conditional CE deviates from the Bayesian bench-
mark in the direction of under-weighting of priors (“base-rate neglect") (Kahneman and Tversky,
1973; Grether, 1980). This clear pattern demonstrates the importance of accounting for inherent
belief updating biases when trying to identify the marginal effects of compound uncertain and
ambiguity on belief updating.

Tomodel belief updating with simple priors and simple information, I use the generalized Bayes’
rule which allows for over- and under-weighting of priors, good news, and bad news (Möbius et al.,
2014):

PrGB(G |p, g, ψ) = pβψrg

pβψrg + (1 − p)β(1 − ψ)rg ,

PrGB(G |p, b, ψ) = pβ(1 − ψ)rb
pβ(1 − ψ)rb + (1 − p)βψrb

,

29Prelec (1998) uses the two-parameter function to model the probability weighting function in Prospect
Theory. It is easy to show that the CE of a bet takes the same functional form if the agent uses Prelec’s
probability weighting function combined with a power utility function.

30For example, the Bayesian posterior belief given a prior of 50% and a good news with 70% accuracy is
70%. Therefore, the Bayesian benchmark for the CE of a 50%-odds bet conditional on 70%-accurate good
news is the CE of a bet with an odds of 70%. The Bayesian posteriors updated from a 60% prior using a
60%-accurate good news is 69%. Hence I take the CE of a 70%-odds bet as its Bayesian benchmark.
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Part Prior Information Empirical model for CEs
1 Simple No information CE(p) = MPrelec(p)
2 Simple Simple CE(p,m, ψ) = MPrelec (

PrGB(G |p,m, ψ)
)

3 Simple Uncertain CE(p, g, ψh or ψl) = MPrelec (
PrGB(G |p, g,W(ψh, ψl ; ε, α))

)
CE(p, b, ψh or ψl) = MPrelec (

PrGB(G |p, b,W(ψl, ψh; ε, α))
)

4 Uncertain No information CE(ph or pl) = MPrelec (W(ph, pl ; ε, α))
5 Uncertain Simple CE(ph or pl,m, ψ) = MPrelec (

PrGB(G |W(ph, pl ; ε, α),m, ψ)
)

Table 6.1: Summary of the empirical model

where β, rg and rb are non-negative numbers. The generalized Bayes’ rule coincides with Bayes’
rule when β, rg and rb all equal one.

6.3 The empirical model

The empirical model is based on the ε-α-maxmin preferences and Full Bayesian updating and is
adapted to allow for nonstandard risk preferences and inherent belief updating biases. For the
evaluation of uncertain bets in problems without belief updating, I use the ε-α-maxmin model to
represent the subjective probability of winning:

Pr(ph or pl) = W(ph, pl; ε, α).

To model evaluations of simple bets conditional on uncertain information, I apply the ε-α-
maxmin formula used in Full Bayesian updating to obtain the subjective information accuracy:
W(ψh, ψl; ε, α) for good news and W(ψl, ψh; ε, α) for bad news. Then I apply this subjective infor-
mation accuracy to the generalized Bayes’ rule: PrGB(G |p, g,W(ψh, ψl; ε, α)) for good news and
PrGB(G |p, b,W(ψl, ψh; ε, α)) for bad news.31

To model evaluations of uncertain bets conditional on simple information, I apply the ε-α-
maxmin formula used in both Full Bayesian updating and Dynamically consistent updating to
obtain the subjective prior belief and then apply this subjective prior to the generalized Bayes’ rule:
PrGB(G |W(ph, pl; ε, α),m, ψ) for both good and bad news.

Note that because the generalized Bayes’ rule shares the same monotonicity properties of the
Bayes’ rule, all the comparative statics results in Sections 3, 4 and 5 remain valid. Table 6.1
summarizes the empirical model for CEs of bets in each part of the experiment.

Importantly, I allow a subject to have different attitudes toward uncertain information and

31Although the empirical model is based on Full Bayesian updating, it can accommodate the qualitative
prediction of Dynamically consistent updating, which is under-/over-reaction.
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uncertain priors with or without belief updating. I also allow attitudes toward compound uncertainty
to be different from attitudes toward ambiguity. In other words, I will separately estimate 3 × 2 = 6
potentially different ε’s and also six α’s.

The empirical model is identified using the experimental data. Specifically, the risk preference is
identified by CEs of simple bets without new information. The parameters in the generalized Bayes’
rule are identified by the differences between CEs of simple bets conditional on simple information
and CEs of simple bets without new information. The six sets of ε’s and α’s are identified by the
differences between CEs in tasks where the odds of bets or information accuracy is uncertain and
those in the corresponding simple tasks.

6.4 Results

I estimate the empirical model using nonlinear least squares at the aggregate level assuming homo-
geneous parameters across subjects.32 In the estimation, I do not impose constraints on the values
of estimates.

Table 6.2 shows the estimates of the key parameters of interest. The numbers have simple
interpretations. For example, the row corresponding to compound information accuracy states that
the representative subject neglects 10% of the content of compound information. Also, she over-
weights (under-weights) the high accuracy by 54% − 46% = 8% relative to the low accuracy when
the news is bad (good). There are several salient patterns in Table 6.2. First, in both uncertain
priors and uncertain information, the more pessimistic possibility receives a higher weight than
the more optimistic one. This pattern holds for both compound uncertainty and ambiguity, which
suggests that uncertainty of all types consistently leads to pessimism. Ambiguity tends to induce
more pessimism than compound uncertainty, except that the results are mixed for uncertain priors
in problems with belief updating. Second, the estimates of ε’s are mostly positive and significant,
and they tend to be larger for ambiguity than for compound uncertainty. One exception is ambiguity
in priors in problems with belief updating, where the estimates are noisy. Last, the estimates of α
are similar in magnitude across uncertainty in priors and uncertainty in information accuracy, and
so are estimates of ε.33

Table 6.3 shows the estimates of the incidental parameters. The degree of risk aversion (b) is small
and insignificant, but subjects exhibit strong and significant insensitivity (a) in their risk preference.

32Specifically, this procedure finds the parameters that minimize the sum of squared differences between
the CE of a bet in the data and that generated by the empirical model. The sum is taken over tasks and subjects.

33The exceptions are that compound uncertainty in priors in problems with belief updating generates more
pessimism, and that ambiguity in priors in problems with belief updating leads to more insensitivity.
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Type of uncertainty α ε

Info accuracy Compound 0.54 (0.02) 0.10 (0.05)
Ambiguous 0.58 (0.02) 0.17 (0.05)

Priors (without updating) Compound 0.55 (0.02) 0.14 (0.04)
Ambiguous 0.61 (0.02) 0.25 (0.05)

Priors (with updating) Compound 0.61 (0.03) 0.14 (0.08)
Ambiguous 0.60 (0.03) -0.08 (0.09)

Table 6.2: Aggregate estimates of α and ε

Notes: All parameters are assumed to be homogeneous among subjects. Numbers in parentheses are standard
errors, which are computed by a bootstrap clustered at the subject level. The model is estimated using
nonlinear least squares.

Parameter Estimate (s.e.)
a 0.77 (0.04)
b 1.03 (0.03)
β 0.51 (0.04)
rg 0.97 (0.07)
rb 0.73 (0.06)

Table 6.3: Aggregate estimates of incidental parameters

Notes: All parameters are assumed to be homogeneous among subjects. Standard errors are computed by a
bootstrap clustered at the subject level. The model is estimated using nonlinear least squares.

Regarding inherent belief updating biases unrelated to compound or ambiguous uncertainty, subjects
under-weight priors by half. They also under-weight bad news by 27% while weighting good news
in a Bayesian manner.

Overall, the structural estimation confirms the descriptive results.34

7 Individual-level relation between uncertainty attitudes
for priors and information

In the last section, I show that the effects of uncertain priors and uncertain information have similar
magnitudes for the representative subject. This result seems to suggest that attitudes towards
uncertain priors and uncertain information manifest the same behavioral trait. However, drawing

34In Appendix B, I show results of the structural estimation at the individual level, with order effects, and
with alternative models. The empirical patterns remain robust in these variants.
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this conclusion would be premature as the similarity between different uncertainty attitudes at the
aggregate level does not imply the same similarity at the individual level.

In this section, I investigate whether attitudes toward uncertainty in information accuracy and
uncertainty in priors (with and without belief updating) are correlated at the individual level. If such
correlations are strong and significant, then we can rather safely use knowledge about an agent’s
attitude toward one kind of uncertainty to make predictions about her attitudes toward the others.
Otherwise, extrapolation is not warranted and we would need to study them separately.

Correlation analysis is challenging because different combinations of updating rules and uncer-
tainty attitudes can generate similar behavior. Without knowing the updating rule a subject adheres
to, it is sometimes difficult to pin down her uncertainty attitudes. For example, suppose that an
ε-α-maxmin subject exhibits under-reaction to news but no pessimism in an uncertain information
problem. Then this behavior is consistent with ε > 0, α = 0 and Full Bayesian updating, but it is also
consistent with ε ≥ 0, α > 0 and Dynamically consistent updating. To circumvent this identification
issue, I focus attention on tests of correlation that are valid under ε-α-maxmin preferences and all
three updating rules considered so far.35 In Appendix G, I consider the full set of correlation tests
that are valid under each model.

The correlation tests I construct are based on the signs of uncertainty premiums. For a bet
whose prior is either ph or pl, define the sign of its uncertainty premium in a problem without belief
updating as

SP(ph or pl) = sign
(
CE( ph + pl

2
) − CE(ph or pl)

)
:=


1, if CE(ph or pl) < CE( ph+pl2 )

0, if CE(ph or pl) = CE( ph+pl2 )

−1, if CE(ph or pl) > CE( ph+pl2 )

.

For a simple bet with uncertain information, define the sign of uncertainty premium as

SP(p,m, ψh or ψl) = sign (Pm(p,m, ψh or ψl)) ,

where Pm(·, ·, · or ·) is defined in Section 4.2. Similarly, define the sign of uncertainty premium of
an uncertain bet in a problem with belief updating as

SP(ph or pl,m, ψ) = sign (Pm(ph or pl,m, ψ)) ,

where Pm(· or ·, ·, ·) is defined in Appendix A.2.

35These tests are also valid under many models considered in the Appendix.
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The following proposition lays out the basis for the tests of correlations between different kinds
of uncertainty attitudes.

Proposition 4 Suppose that an ε-α-maxmin agent uses either Full Bayesian updating, Dynamically
consistent updating, or Maximum likelihood updating and adapts it to the generalized Bayes’ rule.
Then

1. if the agent’s attitudes toward uncertain information and uncertain priors (in problemswithout
updating) are described by the same ε-α-maxmin preference, then

SP(50%, g, 90% or 50%) = SP(90% or 50%);

2. if the agent’s attitudes toward uncertain information and uncertain priors (in problems with
updating) are described by the same ε-α-maxmin preference, then

SP(50%, g, 90% or 50%) = SP(90% or 50%,−, 50%);

3. if the agent’s attitudes toward uncertain priors in problems with and without updating are
described by the same ε-α-maxmin preference, then

SP(90% or 50%,−, 50%) = SP(90% or 50%) and SP(10% or 50%,−, 50%) = SP(10% or 50%).

To see why item 1 in the proposition is true, note that for an ε-α-maxmin agent who uses Full
Bayesian updating adapted to the generalizedBayes’ rule, the comparison betweenCE(50%, g, 90% or 50%)
and CE(50%, g, 70%) boils down to the comparison between W(90%, 50%; ε, α) and 70%. If the
same ε andα apply to both uncertainty in information accuracy and uncertainty in priors (in problems
without updating), then the same comparison between W(90%, 50%; ε, α) and 70% also determines
the comparison between CE(90% or 50%) and CE(70%). Moreover, this statement is also true
if the agent uses the other two belief updating rules. This is because the conditional CEs under
Dynamically consistent updating coincide with Full Bayesian updating for good news, and those
under Maximum likelihood updating are the same as Full Bayesian updating if p = 50%. Similar
arguments also apply to items 2 and 3. In Appendix G, I show the proof of Proposition 4. In fact, the
proposition also holds under several extensions of the smooth model and Segal’s two-stage model.
See Appendix E and F for more details.

I compute the correlation between the two sides of each equation in Proposition 4 to test for
correlation between attitudes toward two different kinds of uncertainty. Table 7.1 shows the results.
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Test Correlation coefficient

Ambiguity Compound
SP(50%, g, 90% or 50%)=SP(90% or 50%) 0 (0.99) -0.08 (0.28)
SP(50%, g, 90% or 50%)=SP(90% or 50%,-,50%) 0.03 (0.71) 0 (0.97)
SP(90% or 50%,-,50%)=SP(90% or 50%) 0.26 (0) 0.15 (0.05)
SP(10% or 50%,-,50%)=SP(10% or 50%) 0.22 (0) 0.1 (0.19)

Table 7.1: Results of correlation tests

Notes: This table lists the correlation coefficients of the tests that are valid under Full Bayesian updating,
Dynamically consistent updating and Maximum likelihood updating adapted to generalized Bayes’ rule.
Numbers in parentheses are p-values with the null hypothesis being that the correlation is zero.

While the correlations that involves attitudes toward uncertain information are all very close to zero,
the correlations between attitudes toward uncertain priors with and without belief updating have
larger magnitudes and, in most cases, high significance. Taken together, these results imply that with
or without the presence of news, subjects have rather consistent attitudes toward uncertainty in the
distribution over payoff-relevant states (“uncertainty in fundamentals"). In contrast, their attitudes
toward uncertainty in information accuracy are distinct from how they treat uncertain fundamentals.

8 Individual-level relation between attitudes toward com-
pound uncertainty and ambiguity

Structural estimates in Section 6 show that at the aggregate level, the insensitivity and uncertain
aversion induced by ambiguity tend to have larger magnitudes than those induced by compound
uncertainty. In this section, I examine the individual-level relation between attitudes toward com-
pound uncertainty and ambiguity. On the one hand, compound uncertainty and ambiguity differ
on whether the full probability distribution over states is explicitly specified. On the other hand,
both types of uncertainty are more complex than simple risks. Hence, investigating the association
between compound and ambiguity attitudes sheds light on the relative importance of “unknown
unknown" and complexity in decisions under uncertainty.

If an agent treats compound and ambiguous information identically, then

CEComp(p,m, ψh or ψl) = CEAmb(p,m, ψh or ψl)

for any prior p, message m and information accuracy ψh and ψl. Similar equations hold for uncertain
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priors with or without belief updating if an agent holds the same attitudes toward compound and
ambiguous uncertainty in priors.

Among all cases where a subject’s CE for a simple bet and its compound and ambiguous
counterparts are all available, there are 39%where the CEs of the compound and ambiguous bets are
identical. The analogous percentages for uncertain information and uncertain priors (in problems
with updating) are 36% and 35%.36 To construct benchmarks for these percentages where attitudes
toward compound and ambiguous uncertainty are independent, I generate independent uniform
random permutations of the compound CEs and ambiguous CEs among those that share the same
corresponding simple CE.37 Using the permuted data, I calculate the same three percentages as
before. Among 500 simulations, the highest numbers are 22%, 23%, and 21% for uncertain priors
(without updating), uncertain information, and uncertain priors (with updating), respectively. These
numbers are significantly lower than the actual percentages of cases where a subject’s compound
CE is equal to her corresponding ambiguous CE, which implies that the match between compound
and ambiguity attitudes is not merely coincidence. Also, I show in Table H.1 that the result is not
simply driven by cases where the corresponding simple, compound, and ambiguous CEs are all the
same, as the conclusion remains even if I exclude these cases. Moreover, there are more cases where
the compound CE coincides with its corresponding ambiguous CE than where either of these two
matches the simple CE. Taken together, my results show that compound uncertainty and ambiguity
are often treated as the same by subjects.

9 Evidence from the stock market
In this section, I complement the experimental results with evidence from the US stock markets.
Consistent with the lab findings, I show that stock prices react less sufficiently to analyst earnings
forecasts with more uncertain accuracy. In addition, the decrease in reaction sufficiency occurs only
for good news but not for bad news. These empirical patterns suggest that the experimental findings
on learning from unknown information sources are externally valid and economically important.

Brokerage houses hire financial analysts to conduct research on publicly traded companies and
to issue forecasts on their earnings. A large literature in accounting and finance has studied the

36If I do not require the simple CE to be available, the percentages are 39%, 35% and 35%, respectively.
37For example, there are 18 subjects who report CE(60%, g, 60%) = 12 and among these 18 subjects,

there are 11 whose CEComp(60%, g, 90% or 30%) is not missing. Hence, I randomly permute these 11
CEs which are conditional on compound information. Similarly, there are 13 subjects among the 18 whose
CEAmb(60%, g, 90% or 30%) is not missing. I generate an independent random permutation of these 13 CEs
conditional on ambiguous information.
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information content of analysts’ forecasts, the market reactions to them, and the factors that affect
the sufficiency of these reactions (Kothari et al., 2016). What makes this setting suitable for studying
unknown information sources is that forecasts differ in the uncertainty of their accuracy, depending
on how familiar the issuing analysts are to the investors.

In Appendix I.1, I adapt the model with ε-α-maxmin preferences and Full Bayesian updating to
a setting of stock investment. When the accuracy of an earnings forecast is uncertain, the reaction
of the earnings expectation of an investor with typical uncertainty attitudes (ε > 0 and α > 0.5) will
be insufficient and biased downward. To the extent that stock price movement reflects the change in
investors’ earnings expectations, the stock price reactions to forecasts with uncertain accuracy will
exhibit the same patterns.

To empirically test the theoretical predictions, I use data from three sources: quarterly earnings
forecasts and earnings announcements from the Institutional Broker Estimate System (I/B/E/S)
detail history file, stock returns from the Center for Research in Security Prices (CRSP), and firm
characteristics from Compustat. I require stocks to be common shares (share codes 10 or 11) on
the AMEX, NYSE, or NASDAQ (exchange codes 1, 2, or 3), and I exclude stocks with prices less
than $1 or market capitalization smaller than $5 million. I restrict attention to earnings forecasts
for quarters between January 1st, 1994 and June 30th, 2019,38 but in order to construct analyst
characteristics such as experience, I use data dated back to January 1st, 1984.

To measure the sufficiency of the market’s reactions to analysts’ forecasts, I calculate the correla-
tion between the immediate price reactions and the price drifts that ensue, following the tradition in
macro, finance, and accounting (e.g. Coibion and Gorodnichenko, 2015). Intuitively, if on average,
immediate price reactions are followed by drifts in the same (opposite) direction, then the immediate
reactions must be insufficient (excessive). The immediate price reaction to an earnings forecast is
measured as the stock’s size-adjusted returns39 in the [-1,1]-trading day window centered on the
forecast release, and the drift is the size-adjusted returns in the [2,64]-trading day period (which
is roughly 3 months). To mitigate the confounds of other news events in the immediate reaction
window, I only include observations where on the forecast announcement day, there is neither earn-
ings announcement from the company nor earnings forecast announcements by any other analyst on
the same company. Also, I restrict attention to forecast revisions, which can be naturally classified
into good news and bad news. Following Gleason and Lee (2003), I define good news as a upward
revision, which is a forecast that is higher than the issuing analyst’s previous forecast on the same

38I do not include observations that date further back in time because the announcement dates recorded in
I/B/E/S often differed from the actual dates by a couple of days prior to early 1990s.

39Size-adjusted returns are the stock’s buy-hold returns minus the equal-weighted average returns of stocks
in the same size decile in the same period.
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quarterly earnings. Analogously, bad news is defined as a downward forecast revision. This leaves
us with a final sample of 1,025,823 forecasts issued by 12,815 analysts on 10,712 stocks.

To proxy for the uncertainty of an analyst’s forecast accuracy for a stock, I look at whether the
analyst has a forecast record for that stock. At a point in time, an analyst has a forecast record for
a stock if she has issued a quarterly earnings forecast on this stock before and the actual earnings
of that quarter have been announced. This proxy is valid because prior research has shown that
forecast accuracy is stock-specific and persistent (Park and Stice, 2000), that past forecast accuracy
predicts future accuracy better than many other analyst attributes (Brown, 2001; Hilary and Hsu,
2013), and that investors learn about an analyst’s forecast accuracy from her forecast record (Chen
et al., 2005). I will henceforth refer to forecasts issued by analysts without (stock-specific) forecast
records as “no-record forecasts” and the rest as “with-record forecasts.”

In addition to the uncertainty in accuracy, no-record and with-record forecasts differ in other
dimensions as well. Table I.3 provides summary statistics for a variety of characteristics of the
forecasts, the issuing analysts, the covered stocks, and the information environment.40 Variable
definitions are in Table I.2. No-record forecasts on average have larger realized forecast errors.
The companies they cover tend to be smaller, have higher and more volatile past returns and lower
book-to-market ratios, and are followed by fewer analysts. The analysts without past records follow
fewer stocks and industries. All variables in Table I.2 are included in the regressions.

Descriptive results show clear patterns that support the hypotheses. Figure 9.1 plots the average
(size-adjusted) returns from one trading day before the forecast announcement to 1 trading day, 1
month, and 2 months after the forecast announcement, normalized by the average 3-month returns.
For good news, the 1-day, 1-month and 2-month reactions are less sufficient for no-record forecasts.
In contrast, for bad news, there is almost no difference in sufficiency between reactions to no-record
and with-record forecasts. These results suggest that investors react insufficiently and pessimistically
to no-record forecasts.41

The main specification of the regression analysis is as follows.

Ret[2, 64]i =η0 + η1Ret[−1, 1]i + η2NoRecordi + η3GoodNewsi

+ η4NoRecordi · GoodNewsi + η5Ret[−1, 1]i · GoodNewsi + η6Ret[−1, 1]i · NoRecordi

+ η7Ret[−1, 1]i · NoRecordi · GoodNewsi + Controlsi + Controlsi · Ret[−1, 1]i + TimeFEi + εi .

(1)

40Table I.4 provides summary statistics for all earnings forecasts issued between January 1st, 1994 and June
30th, 2019, including those that do not meet our data selection criteria.

41The summary statistics for unnormalized returns in windows with different lengths are in Table I.1.
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Figure 9.1: Reactions to forecast revisions

Notes: This figure shows the average size-adjusted returns from one trading day before the forecast an-
nouncement to 1 trading day, 1 month, and 2 months after the forecast announcement, normalized by the
average 3-month returns. The left and right panels plot reactions to upward and downward forecast revisions,
respectively. Error bars represent standard errors calculated using the delta method.

The dependent variable Ret[2, 64]i is the size-adjusted stock returns in the [2,64]-trading day period
after forecast i is announced, and Ret[−1, 1]i is the immediate price reaction to forecast i. The
indicator variable NoRecordi equals one if forecast i is a no-record forecast, and the variable equals
zero otherwise. Following Gleason and Lee (2003), I define GoodNewsi = 1 if forecast i is an
upward revision from the last forecast issued by the same analyst on the same stock’s quarterly
earnings, and GoodNewsi = 0 if the forecast is a downward revision. I include controls on the
characteristics of the forecast, the issuing analyst, the covered stock, and the information environment
(see Table I.2), as well as their interactions with Ret[−1, 1]. I also include Year-Quarter dummies to
control for unobserved time fixed effects on returns. In view of the descriptive results that immediate
stock price reactions to no-record forecasts are less sufficient especially for good news, we expect
the coefficient on the triple interaction, η7, to be positive.

Table 9.1 shows the results from the regression analysis. Across the four specifications that differ
on the set of controls and fixed effects, the coefficients on NoRecord × Ret[−1, 1] and NoRecord

are small and insignificant, suggesting that for bad news, whether the issuing analyst of a forecast
has a past record does not affect the sufficiency of immediate stock price reactions. In contrast,
the coefficient on Ret[−1, 1] × NoRecord × GoodNews is consistently positive and significant. To
interpret the magnitudes of the coefficients, the ratio between the price drift in the [2,64]-trading
day window and the immediate reaction is larger for no-record good news than for with-record good
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news by around 10 percentage points. Taken together, the results imply that investors’ reactions to
earnings forecasts with more uncertain accuracy are more insufficient and pessimistic.

Dependent Var: Ret[2,64] (1) (2) (3) (4)
Ret[-1, 1] 0.0215 0.0173 0.343*** 0.335**

(0.0336) (0.0333) (0.100) (0.100)
NoRecord -0.000671 -0.00225 0.000814 0.000584

(0.00287) (0.00277) (0.00213) (0.00205)
NoRecord × Ret[-1, 1] -0.0435 -0.0430 -0.0281 -0.0311

(0.0626) (0.0622) (0.0474) (0.0465)
GoodNews 0.0113*** 0.0111*** 0.0107*** 0.0107***

(0.00243) (0.00211) (0.00189) (0.00177)
GoodNews × Ret[-1, 1] 0.0605† 0.0569 0.0480 0.0452

(0.0351) (0.0349) (0.0294) (0.0293)
NoRecord × GoodNews 0.00421 0.00440† 0.00102 0.00123

(0.00269) (0.00262) (0.00253) (0.00247)
NoRecord × GoodNews × Ret[-1, 1] 0.150* 0.150* 0.122† 0.124*

(0.0624) (0.0626) (0.0626) (0.0620)
Controls N N Y Y
Controls × Ret[-1,1] N N Y Y
Year-Quarter FE N Y N Y
Observations 1001418 1001417 894004 894004
R2 0.001 0.010 0.004 0.014

Table 9.1: Sufficiency of stock market reactions to forecast revisions

Notes: This table reports the results of Regression (1). The dependent variable Ret[2, 64] is the size-adjusted
stock returns in the [2,64]-trading day period after a forecast is announced, and Ret[−1, 1] is the immediate price
reaction to a forecast. The variable NoRecord indicates that a forecast is issued by an analyst with no stock-
specific forecast record. The variable GoodNews indicates an upward forecast revision. Control variables
are characteristics of the forecast, the issuing analyst, the covered stock, and the information environment,
summarized in Table I.2. Three-dimensional (stock, analyst, year-quarter) cluster-robust standard errors in
parentheses. †p < 0.10, ∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001

In Appendix I.3, I examine the robustness of the regression results. In Table I.5, I show that
the signs of the coefficients are robust to changing the price drift window of the left-hand side
variable in Specification (1). The effect sizes tend to increase as the drift window becomes longer,
suggesting that the insufficiency of the immediate reactions are corrected gradually. Table I.6 shows
the regression results for different cuts of the data. The results are robust when I only consider
“high-innovation” forecast revisions, “isolated” forecasts, and forecasts announced after January 1st,
2004.42 The main effect appears to be not solely driven by forecasts on small-cap stocks, as the

42Following Gleason and Lee (2003), a forecast revision is high-innovation if it falls outside the range
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magnitude (though not the statistical significance) of the coefficient on the triple interaction term
remains when I exclude all stocks with market capitalization smaller than $2 billion. However, this
coefficient vanishes if I only include large-cap stocks (market capitalization > $10 billion), which
may be due to the high concentration of sophisticated investors in those stocks. I also consider
a specification that includes the interactions between Year-Quarter dummies and Ret[−1, 1], and
the results remain robust. Table I.7 reports the results of regressions that replace Ret[−1, 1] and
its interactions terms in Specification (1) with Revision and its interactions terms. The variable
Revision is the difference between an analyst’s revised forecast on earnings per share and the previous
forecast, normalized by the stock price two trading days prior to the announcement of the revision.
The results from this specification are similar: the price drift per unit of Revision is larger for
no-record good news than for with-record good news, but the difference is small and insignificant
for bad news.

In sum, stock price reactions to earnings forecasts are less sufficient if they are issued by analysts
with no forecast record. This phenomenon only happens for good news but not for bad news.
These results corroborate the experimental finding that uncertainty in information accuracy leads to
under-reaction to news and pessimism.

10 Conclusion
This paper studies the effects of uncertainty in information accuracy on belief updating using a
controlled lab experiment and observational data from the stock market. In the experiment, a
mean/mid-point preserving spread in the information accuracy leads subjects to react less to the
information. Moreover, the reaction is biased toward the direction of bad news. The same two
patterns also emerge in the stock market. I show that stock prices under-react more to earnings
forecasts issued by analysts with no proven forecast record, and the under-reaction only occurs for
good news but not for bad news. I examine the predictions of a wide variety of theories and find that
a theory that combines Full Bayesian updating with uncertainty aversion and uncertainty-induced
insensitivity best captures the empirical results.

between the issuing analyst’s previous forecast and the previous consensus. (The consensus is the average of
all forecasts available at the time.) High-innovation forecast revisions are likely to contain new information
as they are not simply herding toward the consensus. “Isolated” forecasts are observations where in the
3-day window centered on the forecast announcement day, there is neither earnings announcement from the
company nor forecast announcements by any other analysts on the same company. This filter further eliminates
concerns that other news events might be driving Ret[−1, 1]. The focus on the period after 2004 is because
a host of regulations on the financial analyst industry came into effect in 2002/2003 (Bradshaw et al., 2017),
and the quality of forecast announcement time data in I/B/E/S improved after 2004 (Hirshleifer et al., 2019).
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In the experiment, I compare the effects of uncertain information accuracy to those of uncertain
priors. Both descriptive analysis and structural estimation show that uncertainty in priors leads
to pessimism, and in problems without belief updating, it also induces insensitivity. Although
the aggregate effects of uncertain information accuracy and uncertain priors are mostly similar in
magnitudes, subjects’ attitudes toward these two kinds of uncertainty are uncorrelated. The lack of
correlation lends support to the view that uncertainty attitudes depend on the relevant issues as well
as framing. Practically, it also suggests that knowing a person’s attitude toward assets with unknown
fundamentals does not help predict her reactions to information from unknown sources.

To separate the roles of complexity and incompletely-specified probabilities (“unknown un-
knowns") in generating belief updating biases, I compare the effects of compound and ambiguous
information. Both kinds of information induce under-reaction and pessimism in the aggregate,
but the effects of ambiguity are larger. At the individual level, there are many instances where a
subject reacts to compound and ambiguous information in exactly the same way. Overall, the results
suggest that both complexity and “unknown unknowns" play important roles in causing belief up-
dating biases. Hence, to mitigate these biases, information needs to be both precise and simple to
understand.

References
Abdellaoui, M., A. Baillon, L. Placido, and P. P. Wakker (2011) “The rich domain of uncertainty:

Source functions and their experimental implementation,” American Economic Review, Vol. 101,
No. 2, pp. 695–723.

Abdellaoui, M., P. Klibanoff, and L. Placido (2015) “Experiments on compound risk in relation to
simple risk and to ambiguity,” Management Science, Vol. 61, No. 6, pp. 1306–1322.

Anantanasuwong, K., R. Kouwenberg, O. S. Mitchell, and K. Peijnenberg (2019) “Ambiguity
attitudes about investments: Evidence from the field.”

Baillon, A., H. Bleichrodt, U. Keskin, O. l’Haridon, and C. Li (2017) “The effect of learning on
ambiguity attitudes,” Management Science, Vol. 64, No. 5, pp. 2181–2198.

Baillon, A., Y. Halevy, and C. Li (2015) “Experimental elicitation of ambiguity attitude using the
random incentive system,” University of British Columbia working paper.

Baillon, A., Z. Huang, A. Selim, and P. P. Wakker (2018) “Measuring Ambiguity Attitudes for All
(Natural) Events,” Econometrica, Vol. 86, No. 5, pp. 1839–1858.

40



Barron, K. (2019) “Belief updating: Does the’good-news, bad-news’ asymmetry extend to purely
financial domains?”Technical report, WZB Discussion Paper.

Becker, G. M., M. H. DeGroot, and J. Marschak (1964) “Measuring utility by a single-response
sequential method,” Behavioral science, Vol. 9, No. 3, pp. 226–232.

Benjamin, D. J. (2019) “Errors in probabilistic reasoning and judgment biases,” in Bernheim, B. D.,
S. DellaVigna, and D. Laibson eds. Handbook of Behavioral Economics - Foundations and
Applications, Vol. 2, pp. 69 – 186: North-Holland.

Bradshaw, M., Y. Ertimur, P. O’Brien et al. (2017) “Financial analysts and their contribution to
well-functioning capital markets,” Foundations and Trends® in Accounting, Vol. 11, No. 3, pp.
119–191.

Brown, L. D. (2001) “How important is past analyst forecast accuracy?” Financial Analysts Journal,
Vol. 57, No. 6, pp. 44–49.

Chateauneuf, A., J. Eichberger, and S. Grant (2007) “Choice under uncertainty with the best and
worst in mind: Neo-additive capacities,” Journal of Economic Theory, Vol. 137, No. 1, pp.
538–567.

Chen, D. L., M. Schonger, and C. Wickens (2016) “oTree—An open-source platform for laboratory,
online, and field experiments,” Journal of Behavioral and Experimental Finance, Vol. 9, pp.
88–97.

Chen, Q., J. Francis, andW. Jiang (2005) “Investor learning about analyst predictive ability,” Journal
of Accounting and Economics, Vol. 39, No. 1, pp. 3–24.

Cheng, I.-H. and A. Hsiaw (2018) “Distrust in Experts and the Origins of Disagreement.”

Chew, S. H., B. Miao, and S. Zhong (2017) “Partial Ambiguity,” Econometrica, Vol. 85, No. 4, pp.
1239–1260.

Cohen, M., I. Gilboa, J. Jaffray, and D. Schmeidler (2000) “An experimental study of updating
ambiguous beliefs,” Risk, Decision and Policy, Vol. 5, No. 2, p. 123–133.

Coibion, O. and Y. Gorodnichenko (2015) “Information rigidity and the expectations formation
process: A simple framework and new facts,” American Economic Review, Vol. 105, No. 8, pp.
2644–78.

41



Corgnet, B., P. Kujal, and D. Porter (2012) “Reaction to public information in markets: how much
does ambiguity matter?” The Economic Journal, Vol. 123, No. 569, pp. 699–737.

Coutts, A. (2019) “Good news and bad news are still news: Experimental evidence on belief
updating,” Experimental Economics, Vol. 22, No. 2, pp. 369–395.

De Filippis, R., A. Guarinno, P. Jehiel, and T. Kitagawa (2018) “Non-Bayesian updating in a social
learning experiment.”

Dempster, A. P. (1967) “Upper and lower probabilities induced by a multivalued mapping,” The
Annals of Mathematical Statistics, pp. 325–339.

Dimmock, S. G., R. Kouwenberg, and P. P. Wakker (2015) “Ambiguity attitudes in a large represen-
tative sample,” Management Science, Vol. 62, No. 5, pp. 1363–1380.

Dominiak, A., P. Duersch, and J.-P. Lefort (2012) “A dynamic Ellsberg urn experiment,” Games and
Economic Behavior, Vol. 75, No. 2, pp. 625–638.

Edwards, W. (1968) “Conservatism in human information processing,” in Kleinmuntz, B. and R. B.
Cattell eds. Formal Representation of Human Judgment: John Wiley and Sons.

Eichberger, J., S. Grant, and D. Kelsey (2007) “Updating Choquet beliefs,” Journal of Mathematical
Economics, Vol. 43, No. 7, pp. 888 – 899.

Eil, D. and J. M. Rao (2011) “The good news-bad news effect: asymmetric processing of objective
information about yourself,” American Economic Journal: Microeconomics, Vol. 3, No. 2, pp.
114–38.

Ellsberg, D. (1961) “Risk, ambiguity, and the Savage axioms,” The quarterly journal of economics,
pp. 643–669.

(2015) Risk, ambiguity and decision: Routledge.

Enke, B. and T. Graeber (2019) “Cognitive Uncertainty.”

Epstein, L. G. and M. Schneider (2003) “Recursive multiple-priors,” Journal of Economic Theory,
Vol. 113, No. 1, pp. 1–31.

(2008) “Ambiguity, information quality, and asset pricing,” The Journal of Finance, Vol.
63, No. 1, pp. 197–228.

42



Epstein, L. and Y. Halevy (2019) “Hard-to-interpret signals.”

Ert, E. and S. T. Trautmann (2014) “Sampling experience reverses preferences for ambiguity,”
Journal of Risk and Uncertainty, Vol. 49, No. 1, pp. 31–42.

Fox, C. R. and A. Tversky (1995) “Ambiguity aversion and comparative ignorance,” The Quarterly
Journal of Economics, Vol. 110, No. 3, pp. 585–603.

Fryer, R. G., P. Harms, and M. O. Jackson (2018) “Updating beliefs when evidence is open to
interpretation: Implications for bias and polarization,” Journal of the European Economic Asso-
ciation.

Gilboa, I. and M. Marinacci (2016) “Ambiguity and the Bayesian paradigm,” in Readings in Formal
Epistemology, pp. 385–439: Springer.

Gilboa, I. and D. Schmeidler (1989) “Maxmin expected utility with non-unique prior,” Journal of
Mathematical Economics, Vol. 18, No. 2, pp. 141–153.

(1993) “Updating ambiguous beliefs,” Journal of economic theory, Vol. 59, No. 1, pp.
33–49.

Gillen, B., E. Snowberg, and L. Yariv (forthcoming) “Experimenting with Measurement Error:
Techniques with Applications to the Caltech Cohort Study,” Journal of Political Economy.

Gleason, C. A. and C. M. Lee (2003) “Analyst forecast revisions and market price discovery,” The
Accounting Review, Vol. 78, No. 1, pp. 193–225.

Greiner, B. (2015) “Subject pool recruitment procedures: organizing experiments with ORSEE,”
Journal of the Economic Science Association, Vol. 1, No. 1, pp. 114–125.

Grether, D. M. (1980) “Bayes rule as a descriptive model: The representativeness heuristic,” The
Quarterly Journal of Economics, Vol. 95, No. 3, pp. 537–557.

Gul, F. and W. Pesendorfer (2014) “Expected uncertain utility theory,” Econometrica, Vol. 82, No.
1, pp. 1–39.

(2018) “Evaluating Ambiguous Random Variables and Updating by Proxy.”

Halevy, Y. (2007) “Ellsberg revisited: An experimental study,” Econometrica, Vol. 75, No. 2, pp.
503–536.

43



Hanany, E. and P. Klibanoff (2007) “Updating preferences with multiple priors,” Theoretical Eco-
nomics, Vol. 2, No. 3, pp. 261–298.

Hansen, L. and T. J. Sargent (2001) “Robust control and model uncertainty,” American Economic
Review, Vol. 91, No. 2, pp. 60–66.

Heath, C. and A. Tversky (1991) “Preference and belief: Ambiguity and competence in choice under
uncertainty,” Journal of risk and uncertainty, Vol. 4, No. 1, pp. 5–28.

Hilary, G. and C. Hsu (2013) “Analyst forecast consistency,” The Journal of Finance, Vol. 68, No.
1, pp. 271–297.

Hirshleifer, D., Y. Levi, B. Lourie, and S. H. Teoh (2019) “Decision fatigue and heuristic analyst
forecasts,” Journal of Financial Economics, Vol. 133, No. 1, pp. 83–98.

Jaffray, J.-Y. (1992) “Bayesian updating and belief functions,” IEEE transactions on systems, man,
and cybernetics, Vol. 22, No. 5, pp. 1144–1152.

Kahneman, D. and A. Tversky (1973) “On the psychology of prediction.,” Psychological review,
Vol. 80, No. 4, p. 237.

(1979) “Prospect Theory: An Analysis of Decision under Risk,” Econometrica, Vol. 47,
No. 2, pp. 263–292.

Kala, N. (2017) “Learning, adaptation and climate uncertainty: Evidence from Indian agriculture.”

Keynes, J. M. (1921) “A Treatise on Probability.”

Klibanoff, P., M. Marinacci, and S. Mukerji (2005) “A smooth model of decision making under
ambiguity,” Econometrica, Vol. 73, No. 6, pp. 1849–1892.

(2009) “Recursive smooth ambiguity preferences,” Journal of Economic Theory, Vol. 144,
No. 3, pp. 930–976.

Knight, F. (1921) “Risk, Uncertainty and Profit.”

Kothari, S., E. So, and R. Verdi (2016) “Analysts’ forecasts and asset pricing: A survey,” Annual
Review of Financial Economics, Vol. 8, pp. 197–219.

Machina, M. J. and M. Siniscalchi (2014) “Ambiguity and ambiguity aversion,” in Handbook of the
Economics of Risk and Uncertainty, Vol. 1, pp. 729–807: Elsevier.

44



Mikhail, M. B., B. R. Walther, and R. H. Willis (1997) “Do security analysts improve their perfor-
mance with experience?” Journal of Accounting Research, Vol. 35, pp. 131–157.

Möbius, M. M., M. Niederle, P. Niehaus, and T. S. Rosenblat (2014) “Managing Self-Confidence.”

Moreno, O.M. andY.Rosokha (2016) “Learning under compound risk vs. learning under ambiguity–
an experiment,” Journal of Risk and Uncertainty, Vol. 53, No. 2-3, pp. 137–162.

Ngangoué, K. (2018) “Learning under Ambiguity: An Experiment on Gradual Information Process-
ing.”

Olszewski, W. (2007) “Preferences over sets of lotteries,” The Review of Economic Studies, Vol. 74,
No. 2, pp. 567–595.

Park, C.W. and E. K. Stice (2000) “Analyst forecasting ability and the stock price reaction to forecast
revisions,” Review of Accounting Studies, Vol. 5, No. 3, pp. 259–272.

Pires, C. P. (2002) “A rule for updating ambiguous beliefs,” Theory and Decision, Vol. 53, No. 2,
pp. 137–152.

Prelec, D. (1998) “The probability weighting function,” Econometrica, pp. 497–527.

Schmeidler, D. (1989) “Subjective probability and expected utility without additivity,” Economet-
rica: Journal of the Econometric Society, pp. 571–587.

Segal, U. (1987) “The Ellsberg paradox and risk aversion: An anticipated utility approach,” Inter-
national Economic Review, pp. 175–202.

(1990) “Two-stage lotteries without the reduction axiom,” Econometrica: Journal of the
Econometric Society, pp. 349–377.

Shafer, G. (1976) A mathematical theory of evidence, Vol. 1: Princeton university press Princeton.

Shishkin, D. rO P. Ortoleva (2019) “Ambiguous information and dilation: an experiment.”

Trautmann, S. and G. van de Kuilen (2015) “Ambiguity attitudes,” in Keren, G. and G. Wu eds. The
Wiley Blackwell Handbook of Judgment and Decision Making, pp. 89–116: John Wiley Sons
Ltd.

Zhang, X. F. (2006) “Information uncertainty and stock returns,” The Journal of Finance, Vol. 61,
No. 1, pp. 105–137.

45



A Details on belief updating with uncertain priors
In this section, I present the theories and experimental evidence on belief updating with uncertain
priors in detail.

A.1 Theories

In an uncertain prior problem, the prior probability of G is either ph or pl with pl < ph, but the
accuracy of additional information is known to be ψ ≥ 0.5. As in the previous section, I will apply
several belief updating rules to the ε-α-maxmin model and compare their predictions in uncertain
prior problems. Proofs of results in this subsection are in Appendix C.2.

A.1.1 Full Bayesian updating

Under Full Bayesian updating, an ε-α-maxmin agent behaves as if the prior is a weighted average of
ph, pl and 50%, and updates accordingly in a Bayesian manner. The weight ε is always applied to
50%, and the rest of the weight, 1 − ε, is split between ph and pl. Since regardless of the realized
message, pl always leads to amore pessimistic posterior than ph, the former will receive α proportion
of the rest of the weight. Hence, the Full Bayesian evaluation conditional on message m ∈ {g, b} is

u = PrBayes(G |W(ph, pl; ε, α),m, ψ).

The insensitivity parameter ε is responsible for the degree of under-weighting of priors in belief
updating, and the aversion parameter α corresponds to pessimism.

The following proposition summarizes the predictions of Full Bayesian updating in uncertain
prior problems.

Proposition 5 Suppose that an ε-α-maxmin agent uses Full Bayesian updating. In an uncertain
prior problem,

1. if ε = 0 and α = 0.5, then her conditional evaluations coincide with the Bayesian conditional
evaluations given a simple prior ph+pl

2 ;

2. as α increases, the conditional evaluations decrease;

3. as ε increases, the evaluation conditional on good news becomes closer to ψ and that
conditional on bad news becomes closer to 1 − ψ.
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A.1.2 Dynamically consistent updating

In an uncertain prior problem, the conditional evaluations under Dynamically consistent updating
are the same as those under Full Bayesian updating. Under Dynamically consistent updating, an
agent who is averse to uncertainty (α > 0.5) prefers to make choices so that her ex-ante payoff is
less dependent on the realization of that uncertainty. When the uncertainty is in priors, mitigating
ex-ante payoff exposure to uncertainty requires refraining from taking the bet. This coincides with
Full Bayesian updating under which an uncertainty averse agent tries to mitigate ex-post payoff
exposure to uncertainty. The following proposition summarizes the results.

Proposition 6 In an uncertain prior problem, Dynamically consistent updating has the same pre-
dictions as Full Bayesian updating for an ε-α-maxmin agent.

A.1.3 Maximum likelihood updating

In uncertain prior problems, the prior(s) that is most likely to generate the realized message is
selected and updated under Maximum likelihood updating. Since good news is more likely to be
generated from high priors and bad news from low priors, agents will over-react to news. Formally,
if ψ , 50%, then the evaluation of the bet conditional on good news is given by

u = PrBayes(ph, g, ψ)

and that conditional on bad news is

u = PrBayes(pl, b, ψ).

If ψ = 50%, then the conditional evaluations coincide with Full Bayesian updating.
The following proposition summarizes the properties of Maximum likelihood updating.

Proposition 7 Suppose an ε-α-maxmin agent uses Maximum likelihood updating. In an uncertain
prior problem,

1. If ψ , 50%, the conditional evaluations of the bet exhibit over-reaction relative to those given
the simple prior ph+pl

2 . The measures of uncertainty attitudes, ε and α, do not affect the
conditional evaluations.

2. If ψ = 50%5, conditional evaluations under Maximum likelihood updating coincide with
those under Full Bayesian updating.
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Theory Aversion (α > 0.5) Insensitivity (ε > 0)
Full Bayesian updating &
Dynamically consistent updating Pessimism Under-weighting of priors

Maximum likelihood updating ψ , 50%: Over-reaction to news (α and ε are irrelevant)
ψ = 50%: coincide with FBU

Table A.1: Summary of theoretical predictions in uncertain prior problems

A.1.4 Summary of theoretical implications

Consider an ε-α-maxmin agent whose attitudes toward uncertain priors fall in the typical range:
ε > 0 and α > 0.5. Taking Bayesian learning with the corresponding simple prior as the benchmark,
Table A.1 summarizes the predictions of the three updating rules I have discussed so far. The left
panel of Figure A.1 illustrates what the threemain predictions, under-weighting of priors, pessimism,
and over-reaction to news, each implies about the comparisons between belief updating with simple
and uncertain priors.

If ε = 0 and α = 0.5, then all theories except Maximum likelihood updating coincide with the
benchmark.

A.2 Experimental results

Table A.2 and the right panel of Figure A.1 show the CEs of simple, compound and ambiguous bets
conditional on simple information. Additional statistical tests, includingwithin- and between-subject
t-tests, are in Table A.5. Among the twelve combinations of prior and information accuracy, the
mean conditional CE given the compound prior is lower than its simple counterpart in 8 comparisons,
and the mean conditional CE given the ambiguous prior is lower in 7 comparisons. This suggests,
though not strongly, that uncertain priors lead to pessimism in the conditional CEs. There is no clear
pattern of either under-weighting of priors or over-reaction to news.

Similar as in the comparison between simple information and uncertain information, I define
absolute pessimists/optimists and absolute prior under-/over-weighters for each uncertain prior
round, and then compare their relative prevalence.

In an uncertain prior round, if the prior of a bet might either be ph or pl, the realized message is
m ∈ {g, b}, and the information accuracy ψ is not 50%, then define the uncertainty premium of this
bet in this round as

Pm(ph or pl,m, ψ) := CE( ph + pl
2

,m, ψ) − CE(ph or pl,m, ψ).
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Figure A.1: Simple and uncertain priors with simple information

Notes: The left panel of this figure illustrates what under-weighting of priors, pessimism, and over-reaction
to news each predicts about the comparisons between belief updating with simple and uncertain priors.
(High, low, and medium priors refer to priors that are higher, lower, and equal to 50%.) The right panel
compares the mean CEs of simple, compound, and ambiguous bets conditional on simple information in
the experiment. Each group of bars correspond to a combination of prior and information. For example,
“odds=70%, accu=70%, bad news” in the upper right graph represents tasks where the (midpoint) prior is
70% and the information is bad news with 70% accuracy. Error bars represent +/- one standard error.
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(Midpoint)
Prior

Information
accuracy

Good/Bad
news

Type of
prior

Mean
conditional

CE

Standard
error N

simple 5.70 0.368 111
30% 70% bad compound 5.62 0.529 71

ambiguous 6.30 0.449 106
simple 6.89 0.400 73

40% 60% bad compound 6.10 0.443 89
ambiguous 5.68 0.464 74
simple 7.10 0.361 163

30% 50% compound 7.56 0.349 164
ambiguous 6.74 0.341 165
simple 10.19 0.533 91

40% 60% good compound 9.89 0.502 76
ambiguous 9.85 0.446 89
simple 10.80 0.645 54

30% 70% good compound 10.59 0.501 94
ambiguous 9.31 0.642 59
simple 7.20 0.672 54

70% 70% bad compound 8.17 0.472 94
ambiguous 7.47 0.617 59
simple 7.46 0.496 91

60% 60% bad compound 8.21 0.499 76
ambiguous 8.22 0.445 89
simple 10.88 0.336 163

70% 50% compound 10.31 0.363 164
ambiguous 11.27 0.353 165
simple 12.45 0.391 73

60% 60% good compound 10.36 0.480 89
ambiguous 10.37 0.566 75
simple 14.74 0.369 111

70% 70% good compound 13.79 0.465 71
ambiguous 13.58 0.375 106
simple 6.47 0.345 165

50% 70% bad compound 7.29 0.385 164
ambiguous 6.46 0.354 164
simple 12.51 0.362 164

50% 70% good compound 11.30 0.379 165
ambiguous 11.88 0.351 164

Table A.2: Bets with simple information

Notes: This table compares the CEs of simple, compound and ambiguous bets, all conditional on simple
information. 50



Red bet

Uncertainty
premium + -

Blue bet + Absolute pessimist Absolute prior over-weighter
- Absolute prior under-weighter Absolute optimist

Table A.3: Classification of subjects in an uncertain prior round

Notes: This table summarizes the classification of subjects in an uncertain prior round. To be classified into
any of the four categories, the uncertainty premium of at least one bet in the round needs to be non-zero. For
rounds whose midpoint prior is (50%, 50%), I do not classify subjects as absolute prior under-/over-weighters.

If ψ = 50%, then I define the uncertainty premium as

Pm(ph or pl,−, 50%) := CE( ph + pl
2

,m′, 50%) − CE(ph or pl,m, 50%),

where m and m′ are the realized messages in the respective rounds.
The classification of subjects is summarized in Table A.3. Same as in an uncertain information

round, a subject is classified as an absolute pessimist in an uncertain prior round if the uncertainty
premiums for the two bets in this round are both weakly positive and at least one of them is strictly
positive. An absolute optimist, on the other hand, is a subject whose uncertainty premiums for the
two bets in this round are both weakly negative but not both zero.

In uncertain prior rounds where the midpoint prior is not (50%, 50%), a subject is classified as
an absolute prior under-weighter if the uncertainty premium of the Red bet is weakly positive, that
of the Blue bet is weakly negative, and one of the two is not zero.43 Analogously, a subject is a
prior over-weighter if the uncertainty premium of the Red bet is weakly negative, that of the Blue
bet is weakly positive, and one of the two is not zero. I do not classify prior under-/over-weighters
for rounds where the midpoint prior is (50%, 50%).

Table A.4 shows the percentages of each of the four categories in all eight rounds with uncertain
priors and simple information. In all rounds but one, there are more absolute pessimists than
optimists, and the percentage of the former aggregated across rounds is also significantly higher
than the latter for both compound and ambiguous prior rounds. This further confirms that uncertain
priors lead to pessimism. In contrast, there isn’t strong evidence for either the under-weighting or
over-weighting of priors. In three out of six rounds, there are more absolute prior under-weighters
than over-weighters; in the other three rounds, the opposite is true.

43Recall that the Red bet always has a (midpoint) prior weakly higher than 50%.
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Taken together, my experimental results suggest that in problems with belief updating, uncer-
tainty in priors leads to pessimism. This pattern is consistent with the combination of uncertainty
aversion and either Full Bayesian updating or Dynamically consistent updating. Under-weighting of
priors, which is the prediction of uncertainty-induced insensitivity together with these two updating
rules, is not borne out in the data.
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Midpoint
prior

Information
accuracy

Type of
prior

Absolute
pessimists

Absolute
optimists

p-value
%(Abs. pess.)
=%(Abs. opt.)

Absolute
prior

under-weighters

Absolute
prior

over-weighters

p-value
%(Abs. negl.)
=%(Abs. over.)

N

(50%, 50%) 70% Amb 31.1% 21.3% 0.084 - - - 164
(60%, 40%) 60% Amb 32.5% 24.7% 0.366 27.3% 33.8% 0.466 77
(70%, 30%) 70% Amb 29.0% 16.7% 0.032 41.3% 31.9% 0.196 138
(70%, 30%) 50% Amb 27.0% 18.4% 0.104 29.4% 35.6% 0.331 163
Aggregate Amb 29.5% 18.8% 0.001 33.3% 33.9% 0.9
(50%, 50%) 70% Comp 32.3% 22.0% 0.072 - - - 164
(60%, 40%) 60% Comp 39.3% 15.4% 0 35.9% 26.5% 0.198 117
(70%, 30%) 70% Comp 21.3% 25.5% 0.67 31.9% 40.4% 0.493 47
(70%, 30%) 50% Comp 25.2% 22.1% 0.569 33.1% 30.7% 0.695 163
Aggregate Comp 30.5% 20.8% 0.002 33.9% 30.6% 0.449

Table A.4: Classification of subjects in each uncertain prior round

Notes: This table shows the percentages of subjects that are classified into the four categories for each uncertain prior round. Only subjects who face comparable belief
updating problems in the uncertain prior round and its corresponding simple prior round are counted. In the rows under “Aggregate", I calculate the percentage of instances
subjects are classified into each category, aggregated across the four or three rounds that are relevant for that category. The p-values are computed using Pearson’s chi-square
goodness-of-fit tests.
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within-subject between-subject

Prior and info Type of
prior CE(simp) − CE(unc) N CE(simp) − CE(unc) N(simp) N(unc)

odds=30%, accu=70% compound -0.47 (0.52) 32 0.01 (0.99) 111 39
bad news ambiguous -0.21 (0.58) 95 -2.39 (0.06) 111 11
odds=40%, accu=60% compound -0.11 (0.84) 57 1.8 (0.03) 73 32
bad news ambiguous 0.9 (0.26) 30 1.28 (0.08) 73 44
odds=30%, accu=50% compound -0.45 (0.18) 163
neutral news ambiguous 0.42 (0.16) 163
odds=40%, accu=60% compound 0.63 (0.29) 60 -0.75 (0.57) 91 16
good news ambiguous 0.34 (0.61) 47 0.33 (0.71) 91 42
odds=30%, accu=70% compound 0.13 (0.93) 15 0.09 (0.92) 54 79
good news ambiguous 1.33 (0.06) 43 1.11 (0.43) 54 16
odds=70%, accu=70% compound -1.73 (0.02) 15 -0.78 (0.34) 54 79
bad news ambiguous 0.12 (0.85) 43 -1.61 (0.25) 54 16
odds=60%, accu=60% compound -0.1 (0.86) 60 -0.29 (0.82) 91 16
bad news ambiguous 0.02 (0.97) 47 -0.4 (0.63) 91 42
odds=70%, accu=50% compound 0.56 (0.12) 163
neutral news ambiguous -0.34 (0.27) 163
odds=60%, accu=60% compound 1.96 (0) 57 2.11 (0.02) 73 32
good news ambiguous 0.97 (0.2) 31 2.47 (0) 73 44
odds=70%, accu=70% compound -0.03 (0.96) 32 1.74 (0.02) 111 39
good news ambiguous 0.96 (0.01) 95 2.01 (0.1) 111 11
odds=50%, accu=70% compound -0.88 (0.03) 164
bad news ambiguous -0.04 (0.9) 164
odds=50%, accu=70% compound 1.26 (0) 164
good news ambiguous 0.63 (0.1) 164

Table A.5: Comparison between CEs of uncertain and simple bets conditional on simple
information, with and without anchoring

Notes: This table shows the differences in mean conditional CEs between uncertain prior problems and simple
prior problems. Numbers in parentheses are p-values in t-tests, and N is the number of subjects included.
For example, the top row of the table states that there are 32 subjects who receive bad news both in the
compound information problem and in the simple information problem where the prior is 30% and (midpoint)
information accuracy 70%. Among these subjects, the difference in mean conditional CEs between these two
problems is -$0.47 and the p-value of the paired t-test is 0.52. Thirty-nine subjects receive bad news in the
compound prior problem but not in the simple problem, and there are 111 subjects who receive bad news in
the simple problem in total. The difference between the mean conditional CE of the simple bet of the latter
group and that of the compound bet of the former group is 0.01, and the p-value of the unpaired t-test is 0.99.
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Prior
Midpoint

Information
accuracy

Type of
information

Absolute
confirmation

bias

Absolute
contradiction

bias
N

(60%, 40%) 60% Ambiguous 21 23 71
(70%, 30%) 70% Ambiguous 23 33 94
(70%, 30%) 50% Ambiguous 30 56 137
(60%, 40%) 60% Compound 36 29 106
(70%, 30%) 70% Compound 36 45 123
(70%, 30%) 50% Compound 28 62 137

Table B.1: Absolute confirmation bias and absolute contradiction bias

Notes: This table shows the numbers of subjects that are classified into absolute confirmation bias and absolute
contradiction bias. Only subjects who face comparable belief updating problems in the uncertain information
round and its corresponding simple information round are counted.

B Additional results on the experiment

B.1 An alternative classification for behaviors in uncertain informa-
tion rounds

In this section, I consider two alternative subject categories based on behaviors in uncertain informa-
tion rounds: absolute confirmation bias and absolute contradiction bias. In an uncertain information
round where the odds of the bets are not 50%, if a subject’s uncertainty premium for the bet with
higher-than-50% odds is weakly negative, her uncertainty premium for the other bet is weakly posi-
tive, and at least one of the two is not zero, then I classify this subject into the category of absolute
confirmation bias. If, on the contrary, the bet with high odds has a weakly positive uncertainty
premium, the other one has a weakly negative premium, and at least one is not zero, then this subject
is absolute contradiction-biased. In rounds where the odds are 50-50, I do not classify subjects into
these two categories.

Table B.1 shows the number of subjects in these two categories. Except in one round, there are
more subjects in the category of absolute contradiction bias in every uncertain information round.
This suggests that uncertainty in information accuracy does not lead to prevalent confirmation bias.

B.2 Order effects and anchor effects in the experimental data

In this section, I show that the experimental results are robust to order effects and anchor effects.
Recall that in the experiment there are three different orders among parts, and two orders between
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Session Order between parts Ambiguous block first? Number of subjects
1 1-4-2-3-5 No 16
2 1-4-2-3-5 No 16
3 1-4-2-3-5 No 13
4 1-4-2-3-5 Yes 16
5 1-4-2-5-3 No 15
6 1-2-3-4-5 No 16
7 1-2-3-4-5 Yes 16
8 1-4-2-5-3 Yes 15
9 1-4-2-5-3 Yes 15
10 1-2-3-4-5 No 11
11 1-2-3-4-5 Yes 16

Table B.2: Description of sessions

compound and ambiguous uncertainty within parts (Table B.2). To check for order effects, I estimate
the structural model separately for subjects who face each of the five orders and compare the resulting
estimates for the key parameters. Table B.4 shows the result. Across different cuts of data, the α’s
are consistently larger than 0.5 and the ε’s are consistently larger than 0. This suggests that our key
results are robust to order effects.

In all three different orders among parts, Part 2 (simple prior with simple information) comes
before Part 3 (simple prior with uncertain information) and Part 5 (uncertain prior with simple
information). This raises the question whether subjects anchor their answers in Parts 3 and 5 to those
in Part 2.

To address this concern, I first conduct a within-subject analysis by running a paired t-test
between the conditional CEs in each uncertain information (prior) problem and their counterparts
in the corresponding simple problem. The subjects who are included in the paired t-tests are
those who receive comparable messages in the two corresponding rounds,44 so their conditional
CEs in the uncertain information (prior) round could potentially be anchored to their answers in
the corresponding simple round. The other subjects who do not receive comparable messages are
not subject to the anchor effect, and I compare the mean of their conditional CEs in the uncertain
information (prior) problem to the mean conditional CE in the corresponding simple problem in an
unpaired t-test, which is a between-subject analysis.

Table B.5 reports results for uncertain information problems. For subjects who receive com-

44Receiving comparable messages in two corresponding rounds means that the uncertainty premiums of
the Red bet and the Blue bet in the uncertain information (prior) round can be calculated from data. See
Section 4.2 and Appendix A.2 for the definition of uncertainty premiums.
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Order Prior Information accuracy

Part 1
1 (50%, 50%) -
2 (60%, 40%) -
3 (70%, 30%) -

Part 2

1 (50%, 50%) 70%
2 (60%, 40%) 60%
3 (70%, 30%) 70%
4 (70%, 30%) 50%

Part 3
(compound/ambiguous block)

1 (50%, 50%) 90% or 50%
2 (60%, 40%) 90% or 30%
3 (70%, 30%) 90% or 50%
4 (70%, 30%) 90% or 10%

Part 4
(compound/ambiguous block)

1 (90%, 10%) or (30%, 70%) -
2 (90%, 10%) or (10%, 90%) -
3 (90%, 10%) or (50%, 50%) -

Part 5
(compound/ambiguous block)

1 (90%, 10%) or (50%, 50%) 70%
2 (90%, 10%) or (10%, 90%) 70%
3 (90%, 10%) or (50%, 50%) 60%
4 (90%, 10%) or (30%, 70%) 50%

Table B.3: Order between rounds within each part

Ambiguity first? Order among parts

No Yes 1-2-3-4-5 1-4-2-3-5 1-4-2-5-3

α

Compound
Info accuracy 0.56 (0.03) 0.52 (0.02) 0.51 (0.02) 0.56 (0.03) 0.55 (0.03)
Priors w/o updating 0.55 (0.02) 0.55 (0.02) 0.58 (0.02) 0.51 (0.02) 0.55 (0.02)
Priors with updating 0.62 (0.04) 0.6 (0.05) 0.68 (0.06) 0.59 (0.05) 0.56 (0.03)

Ambiguous
Info accuracy 0.57 (0.03) 0.6 (0.03) 0.54 (0.03) 0.62 (0.03) 0.6 (0.03)
Priors w/o updating 0.65 (0.03) 0.56 (0.03) 0.59 (0.03) 0.61 (0.03) 0.61 (0.03)
Priors with updating 0.63 (0.05) 0.57 (0.03) 0.59 (0.04) 0.61 (0.04) 0.59 (0.03)

ε

Compound
Info accuracy 0.22 (0.06) 0 (0.07) 0.02 (0.06) 0.05 (0.08) 0.25 (0.05)
Priors w/o updating 0.14 (0.06) 0.17 (0.06) 0.13 (0.07) 0.25 (0.07) 0.04 (0.06)
Priors with updating 0.06 (0.09) 0.21 (0.13) 0.13 (0.13) 0.28 (0.1) -0.1 (0.12)

Ambiguous
Info accuracy 0.18 (0.07) 0.17 (0.08) 0.22 (0.08) 0.02 (0.08) 0.29 (0.05)
Priors w/o updating 0.2 (0.06) 0.32 (0.07) 0.24 (0.05) 0.27 (0.08) 0.25 (0.07)
Priors with updating 0.15 (0.11) -0.28 (0.14) -0.19 (0.16) 0.05 (0.1) -0.22 (0.1)

Table B.4: Order effects in estimates of uncertainty attitudes

Notes: This table shows the estimates of α’s and ε’s by the order between compound and ambiguous blocks
and the order among parts. Numbers in parentheses are standard errors computed by a bootstrap clustered at
the subject level.
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parable messages in the uncertain information problem and the corresponding simple problem
(“within-subject"), it is apparent that uncertain information leads to under-reaction to news. There
is also evidence for pessimism caused by uncertain information accuracy. First, the effect sizes are
more likely to be significant for good news than for bad news. Second, in half of the comparisons
with neutral information, CEs conditional on uncertain information are significantly lower. (In the
other comparisons with neutral information, the uncertain CEs are higher but the differences are not
significant.) The results of the between-subject analysis are more noisy, but the overall patterns of
under-reaction and pessimism remain present.

Table A.5 reports results for uncertain prior problems. Despite the noise in the results, in the
majority of the comparisons in both within- and between-subject analysis, the conditional CEs of
uncertain bets are lower than their simple counterparts, suggesting that uncertain priors in belief
updating problems lead to pessimism.

Taken together, the key effects of uncertain information and uncertain priors are robust to order
effects and anchor effects.
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within-subject between-subject

Prior and info Type of
information CE(simp) − CE(unc) N CE(simp) − CE(unc) N(simp) N(unc)

odds=30%, accu=70% compound 1.25 (0.11) 28 0.11 (0.93) 54 16
good news ambiguous 2.4 (0.06) 15 -0.81 (0.45) 54 32
odds=40%, accu=60% compound 0.8 (0.23) 59 1.19 (0.27) 91 26
good news ambiguous 1.14 (0.12) 29 0.09 (0.93) 91 31
odds=50%, accu=70% compound 0.52 (0.14) 163
good news ambiguous 1.66 (0) 164
odds=60%, accu=60% compound 0.55 (0.25) 47 -0.24 (0.75) 73 33
good news ambiguous 1.9 (0) 42 3.25 (0) 73 63
odds=70%, accu=70% compound 0.86 (0.02) 95 2.08 (0.02) 111 26
good news ambiguous 0.54 (0.1) 79 1.74 (0.03) 111 39
odds=30%, accu=70% compound 0.16 (0.57) 95 -0.1 (0.91) 111 26
bad news ambiguous -0.32 (0.4) 79 0.32 (0.67) 111 39
odds=40%, accu=60% compound -0.28 (0.47) 47 -1.56 (0.05) 73 33
bad news ambiguous -0.12 (0.83) 42 1.54 (0.02) 73 63
odds=50%, accu=70% compound -0.59 (0.07) 163
bad news ambiguous -0.47 (0.14) 165
odds=60%, accu=60% compound -0.64 (0.15) 59 -1.42 (0.15) 91 26
bad news ambiguous -1.1 (0.16) 29 -1.67 (0.07) 91 31
odds=70%, accu=70% compound -1.14 (0.22) 28 -4.05 (0) 54 16
bad news ambiguous -0.73 (0.56) 15 -2.7 (0.01) 54 32
odds=30%, accu=50% compound -0.33 (0.33) 163
neutral news ambiguous -0.17 (0.66) 162
odds=70%, accu=50% compound 0.6 (0.05) 163
neutral news ambiguous 0.65 (0.03) 162

Table B.5: Comparison between CEs of simple bets conditional on uncertain and simple
information, with and without anchoring

Notes: This table shows the differences in mean conditional CEs between uncertain information problems
and simple information problems. Numbers in parentheses are p-values in t-tests, and N is the number of
subjects included. For example, the top row of the table states that there are 28 subjects who receive good
news both in the compound information problem and in the simple information problem where the prior is
30% and (midpoint) information accuracy 70%. Among these subjects, the difference in mean conditional
CEs between these two problems is $1.25 and the p-value of the paired t-test is 0.11. Sixteen subjects receive
good news in the compound information problem but not in the simple problem, and there are 54 subjects
who receive good news in the simple problem in total. The difference between the mean simple conditional
CE of the latter group and the mean compound conditional CE of the former is 0.11, and the p-value of the
unpaired t-test is 0.93.
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B.3 Inherent belief updating biases

Figure B.1: Belief updating with simple priors and simple information

Notes: The figure shows the mean CEs of simple bets conditional on simple information. The horizontal axis
lists the combinations of prior and information. For example, “odds=30%, accu=70%, good news” refers to
simple bets with a 30% winning odds conditional on 70%-accurate simple good news. The red bars represent
the mean conditional CEs and the blue bars represent the Bayesian benchmarks. The Bayesian benchmarks
for “odds=30%, accu=70%, bad news" and “odds=70%, accu=70%, good news" are missing because I do not
elicit CEs for simple bets whose odds match the Bayesian posteriors of these two tasks. Error bars represent
+/- one standard error.

B.4 Individual-level structural estimation

In this section, I estimate the structural model in Section 6 for each individual subject. Table B.7
shows the median estimates and the percentages of subjects of whom α > 0.5 and ε > 0. For all
types of uncertainty, the median α is greater than 0.5 and the median ε is greater than 0. This is
consistent with the pattern in the aggregate estimates, except that in the aggregate estimation, the ε
for ambiguous priors (in problems with belief updating) is insignificantly negative. Table B.8 shows
the median estimates of the parameters in risk preferences and inherent belief updating biases, which
are rather close to the aggregate estimates in Table 6.3.
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Odds Information
accuracy

Good/Bad
news

Mean
conditional CE

Mean
Bayesian CE

Paired t-test for
Bayesianism N

30% 70% bad 5.70 111
30% 50% 6.45 7.10 0.037 163
30% 70% good 9.10 10.80 0.000 54
40% 60% bad 6.45 6.89 0.244 73
40% 60% good 9.10 10.19 0.026 90
50% 70% bad 6.45 6.47 0.956 165
50% 70% good 13.09 12.51 0.098 164
60% 60% bad 9.10 7.46 0.002 90
60% 60% good 13.09 12.45 0.034 73
70% 70% bad 9.10 7.20 0.049 54
70% 50% 13.09 10.88 0.000 163
70% 70% good 14.74 111

Table B.6: CEs of simple bets conditional on simple information

Notes: This table compares the mean CEs of simple bets conditional on simple information to the mean CEs
given Bayesian posteriors. Numbers under paired t-tests are two-sided p-values.

Type of uncertainty
α ε

Median %(α > 0.5) Median %(ε > 0)

Info accuracy Compound 0.52 57.0% 0.23 61.8%
Ambiguous 0.57 63.6% 0.31 69.7%

Priors (without updating) Compound 0.54 58.8% 0.17 67.3%
Ambiguous 0.59 69.7% 0.27 69.7%

Priors (with updating) Compound 0.53 61.2% 0.25 63.0%
Ambiguous 0.56 64.2% 0.19 59.4%

Table B.7: Individual estimates of α and ε

Notes: This table shows the median estimates and the percentages of subjects of whom α > 0.5 and ε > 0.
All estimations are conducted using nonlinear least squares.
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Parameter Median estimate
a 0.92
b 1.05
β 0.47
rg 0.96
rb 0.76

Table B.8: Individual estimates of incidental parameters

Notes: In the individual-level estimations, all parameters are estimated for each subject. This model is
estimated using nonlinear least squares.

B.5 Alternative specifications of the structural model

B.5.1 Insensitivity proportional to the range of uncertainty

In the ε-α-maxmin model, agents put a fixed weight ε on the symmetric and maximally uncertain
probability (50%, 50%) so long as there are two possible probability distributions. Alternatively,
it’s also possible that the degree of insensitivity depends on the range of uncertainty. In this section,
I consider an alternative model where ε, the parameter for uncertainty-induced insensitivity, scales
with the gap between the two possible priors or levels of information accuracy. Formally, define

W̃(x, y; ε̃, α) := (1 − ε̃ · |x − y |)[(1 − α)x + αy] + ε̃ · |x − y | · 0.5.

In the setting of my experiment where the payoff of the bet is either 1 util or 0 util, and the winning
odds is either ph or pl with ph > pl, an agent with scaled ε-α-maxmin (expected utility) preference
evaluates the bet by

u = W̃(ph, pl; ε̃, α).

The parameter ε̃ can be interpreted as insensitivity per unit of range of uncertainty.
Like the original ε-α-maxmin preference, the scaled version can also be written in the functional

form of Choquet expected utility. Hence, I can invoke Eichberger et al. (2007) to derive the
conditional evaluations of bets in belief updating problems under Full Bayesian updating. Applying
the same risk preference specification and generalization to Bayes’ rule, I obtain the empirical model
shown in Table B.9.

I estimate this model at the aggregate level using nonlinear least squares. Tables B.10 and B.11
show the estimates of the key parameters and the incidental ones, respectively. These estimates have
very similar patterns as those of the original empirical model in Section 6.
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Part Prior Information Model for CE
1 Simple No information CE(p) = MPrelec(p)
2 Simple Simple CE(p,m, ψ) = MPrelec (

PrGB(G |p,m, ψ)
)

3 Simple Uncertain CE(p, g, ψh or ψl) = MPrelec (
PrGB(G |p, g, W̃(ψh, ψl ; ε̃, α))

)
CE(p, b, ψh or ψl) = MPrelec (

PrGB(G |p, b, W̃(ψl, ψh; ε̃, α))
)

4 Uncertain No information CE(ph or pl) = MPrelec (
W̃(ph, pl ; ε̃, α)

)
5 Uncertain Simple CE(ph or pl,m, ψ) = MPrelec (

PrGB(G |W̃(ph, pl ; ε̃, α),m, ψ)
)

Table B.9: Summary of the empirical model based on the scaled ε-α-maxmin preference

Type of uncertainty α ε̃

Info accuracy Compound 0.54 (0.02) 0.20 (0.11)
Ambiguous 0.59 (0.02) 0.38 (0.12)

Priors (without updating) Compound 0.55 (0.02) 0.31 (0.09)
Ambiguous 0.63 (0.03) 0.55 (0.09)

Priors (with updating) Compound 0.62 (0.04) 0.33 (0.19)
Ambiguous 0.60 (0.03) -0.15 (0.23)

Table B.10: Aggregate-level estimates of α and ε̃ in the model based on the scaled ε-α-
maxmin preference

Notes: All parameters are assumed to be homogeneous among subjects. Numbers in the parentheses are
standard errors, which are computed by a bootstrap clustered at the subject level. The model is estimated
using nonlinear least squares.

Parameter Estimate (s.e.)
a 0.77 (0.04)
b 1.03 (0.03)
β 0.52 (0.04)
rg 0.97 (0.06)
rb 0.72 (0.06)

Table B.11: Aggregate-level estimates of incidental parameters in the model based on the
scaled ε-α-maxmin preference

Notes: All parameters are assumed to be homogeneous among subjects. Numbers in parentheses are standard
errors, which are computed by a bootstrap clustered at the subject level. The model is estimated using
nonlinear least squares.
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Part Prior Information Model for CE
1 Simple No information CE(p) = MPrelec(p)
2 Simple Simple CE(p,m, ψ) = MPrelec (

PrGB(G |p,m, ψ)
)

3 Simple Uncertain
CE(p, g, ψh or ψl) = MPrelec

(
PrGB(G |p, g, Ŵ(ψh, ψl ; ε, α, δ))

)
CE(p, b, ψh or ψl) = MPrelec

(
PrGB(G |p, b, Ŵ(ψl, ψh; ε, α, δ))

)
4 Uncertain No information CE(ph or pl) = MPrelec

(
Ŵ(ph, pl ; ε, α, δ)

)
5 Uncertain Simple CE(ph or pl,m, ψ) = MPrelec

(
PrGB(G |Ŵ(ph, pl ; ε, α, δ),m, ψ)

)
Table B.12: Summary of the empirical model based on the ε-α-δ-maxmin preference

B.5.2 Alternative baseline probabilities

In this section, I generalize the original ε-α-maxmin model to allow the baseline probability that
receives ε weight to be a free parameter rather than (50%, 50%). Formally, define

Ŵ(x, y; ε, α, δ) := (1 − ε)[(1 − α)x + αy] + ε · δ.

In the setting of my experiment where the payoff of the bet is either 1 util or 0 util, and the winning
odds is either ph or pl with ph > pl, an agent with ε-α-δ-maxmin (expected utility) preference
evaluates the bet by

u = Ŵ(ph, pl; ε, α, δ).

Thismodel can bewritten in the functional formofChoquet expected utility, so I can apply Eichberger
et al. (2007) to obtain its Full Bayesian updating extension to problemswith belief updating. With the
same risk preference specification and generalization to Bayes’ rule, Table B.12 shows the empirical
model based on the ε-α-δ-maxmin preference.

I estimate this model using nonlinear least squares at the aggregate level. The estimates of ε,
α and δ are shown in Table B.13. The point estimates of δ are not significantly different from 0.5
except for compound priors in problems without updating. Moreover, the estimates of α and ε have
similar patterns as those under the original empirical model. This suggests that the main results of
the structural estimation is robust to allowing the baseline probability which receives ε weight to be
a free parameter.
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Type of uncertainty α ε δ

Info accuracy Compound 0.55 (0.04) 0.11 (0.05) 0.59 (2.55)
Ambiguous 0.6 (0.04) 0.18 (0.05) 0.55 (0.21)

Priors (without updating) Compound 0.61 (0.04) 0.15 (0.04) 0.72 (0.17)
Ambiguous 0.63 (0.05) 0.25 (0.05) 0.55 (0.08)

Priors (with updating) Compound 0.63 (0.06) 0.14 (0.09) 0.61 (7.45)
Ambiguous 0.6 (0.05) -0.08 (0.09) 0.42 (35.1)

Table B.13: Aggregate estimates of α, ε and δ in the model based on the ε-α-δ-maxmin
preference

Notes: All parameters are assumed to be homogeneous among subjects. Numbers in the parentheses are
standard errors, which are computed by a bootstrap clustered at the subject level. The model is estimated
using nonlinear least squares.

C Additional results on the ε-α-maxmin EU preferences

C.1 Representing ε-α-maxmin preferences using Choquet integrals

Under Choquet expected utility (CEU) (Schmeidler, 1989), each event E ⊆ S is assigned a value
called capacity by a set function ν : 2S → [0, 1]. A capacity satisfies the following two conditions:

• ν(∅) = 0 and ν(S) = 1;

• If E1 ⊆ E2, then ν(E1) ≤ ν(E2).

Capacities generalize probability measures by allowing measures of sets to be non-additive. Given
a capacity and a vNM utility function for simple lotteries, a CEU agent evaluates an act by taking
the Choquet integral of utility. Formally, denote by u(s) the vNM utility of the lottery assigned to
state s ∈ S, then the CEU evaluation of the act is∫

R
ν ({s ∈ S |u(s) ≥ t}) dt.

Now I show the CEU representation of the ε-α-maxmin preferences. I construct the capacity
of each event so that it equals the ε-α-maxmin evaluation of a bet that pays out 1 util if this event
happens and 0 otherwise. Recall that W(x, y; ε, α) = (1 − ε)[(1 − α)x + αy] + ε · 0.5. In a problem
with uncertain prior (ph or pl), ph > pl, and no information, let the state space be {G, B}. Then the
capacity of each event is

• ν({G}) = W(ph, pl; ε, α),
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• ν({B}) = W(1 − pl, 1 − ph; ε, α).

In a problem with simple prior p and uncertain information accuracy (ψh or ψl), ψh > ψl, let
the state space be {Gg,Gb, Bg, Bb}, where the capital letter represents the true outcome of the bet
and the lower-case letter the realized message.45 The capacity of each event is

• ν({Gg}) = p ·W(ψh, ψl; ε, α),

• ν({Gb}) = p ·W(1 − ψl, 1 − ψh; ε, α),

• ν({Bg}) = (1 − p) ·W(1 − ψl, 1 − ψh; ε, α),

• ν({Bb}) = (1 − p) ·W(ψh, ψl; ε, α),

• ν({Gg,Gb}) = p,

• ν({Bg, Bb}) = 1 − p,

• ν({Gg, Bb}) = W(ψh, ψl; ε, α),

• ν({Gb, Bg}) = W(1 − ψl, 1 − ψh; ε, α),

• ν({Gg, Bg}) =


p ·W(ψh, ψl; ε, α) + (1 − p) ·W(1 − ψh, 1 − ψl; ε, α), if p ≥ 0.5

p ·W(ψl, ψh; ε, α) + (1 − p) ·W(1 − ψl, 1 − ψh; ε, α), if p < 0.5
,

• ν({Gb, Bb}) =


p ·W(1 − ψl, 1 − ψh; ε, α) + (1 − p) ·W(ψl, ψh; ε, α), if p ≥ 0.5

p ·W(1 − ψh, 1 − ψl; ε, α) + (1 − p) ·W(ψh, ψl; ε, α), if p < 0.5
,

• ν({Gg,Gb, Bg}) = p + (1 − p) ·W(1 − ψl, 1 − ψh; ε, α),

• ν({Gg,Gb, Bb}) = p + (1 − p) ·W(ψh, ψl; ε, α),

• ν({Gg, Bg, Bb}) = p ·W(ψh, ψl; ε, α) + 1 − p,

• ν({Gb, Bg, Bb}) = p ·W(1 − ψl, 1 − ψh; ε, α) + 1 − p.

In a problem with uncertain prior (ph or pl), ph > pl, and simple information accuracy ψ, let
the state space be {Gg,Gb, Bg, Bb}, where the capital letter represents the true outcome of the bet
and the lower-case letter the realized message. The capacity of each event is

45The definition of state space is natural because it is the coarsest common refinement of the partition
generated by the events with uncertain probabilities {{Gg, Bb}, {Gb, Bg}} and the partition generated by the
payoffs {{Gg,Gb}, {Bg, Bb}}.

66



• ν({Gg}) = W(ph, pl; ε, α) · ψ,

• ν({Gb}) = W(ph, pl; ε, α) · (1 − ψ),

• ν({Bg}) = W(1 − pl, 1 − ph; ε, α) · (1 − ψ),

• ν({Bb}) = W(1 − pl, 1 − ph; ε, α) · ψ,

• ν({Gg,Gb}) = W(ph, pl; ε, α),

• ν({Bg, Bb}) = W(1 − pl, 1 − ph; ε, α),

• ν({Gg, Bb}) = ψ,

• ν({Gb, Bg}) = 1 − ψ,

• ν({Gg, Bg}) =


W(ph, pl; ε, α) · ψ +W(1 − ph, 1 − pl; ε, α) · (1 − ψ), if ph + pl ≥ 1

W(pl, ph; ε, α) · ψ +W(1 − pl, 1 − ph; ε, α) · (1 − ψ), if ph + pl < 1
,

• ν({Gb, Bb}) =


W(pl, ph; ε, α) · (1 − ψ) +W(1 − pl, 1 − ph; ε, α) · ψ, if ph + pl ≥ 1

W(ph, pl; ε, α) · (1 − ψ) +W(1 − ph, 1 − pl; ε, α) · ψ, if ph + pl < 1
,

• ν({Gg,Gb, Bg}) = W(ph, pl; ε, α) · ψ + 1 − ψ,

• ν({Gg,Gb, Bb}) = W(ph, pl; ε, α) · (1 − ψ) + ψ,

• ν({Gg, Bg, Bb}) = W(1 − pl, 1 − ph; ε, α) · (1 − ψ) + ψ,

• ν({Gb, Bg, Bb}) = W(1 − pl, 1 − ph; ε, α) · ψ + 1 − ψ.

C.2 Proofs of results on ε-α-maxmin preferences

Proof of Propositions 1 and 5. Eichberger et al. (2007) defines Full Bayesian updating for capacities
as follows. The capacity of event A conditional on realized message E is

ν(A|E) = ν(A ∩ E)
ν(A ∩ E) + 1 − ν(A ∪ Ec) .

We can obtain the Full Bayesian conditional evaluations of bets by directly applying the defini-
tion above to the CEU representation of ε-α-maxmin preferences. For example, in an uncertain
information problem, the capacity of G conditional on message g is

ν({Gg}|{Gg, Bg}) = ν({Gg})
ν({Gg}) + 1 − ν({Gg,Gb, Bb})

67



=
p ·W(ψh, ψl; ε, α)

p ·W(ψh, ψl; ε, α) + (1 − p) · (1 −W(ψh, ψl; ε, α))
= PrBayes(G |p, g,W(ψh, ψl; ε, α)).

Hence, the evaluation of the bet conditional on message g is

u = (1−ν({Gg}|{Gg, Bg}))·0+ν({Gg}|{Gg, Bg})·1 = ν({Gg}|{Gg, Bg}) = PrBayes(G |p, g,W(ψh, ψl; ε, α)).

The conditional evaluation given message b and those in uncertain prior problems can be similarly
derived.

The comparative statics of the conditional evaluations with respect to α and ε are straightforward.

Proof of Propositions 2 and 6. Under Dynamically consistent updating (Hanany and Klibanoff,
2007), the agent forms a contingent plan of actions before the message realizes and executes the plan
resolutely after observing the message. In our example where the agent chooses between a bet and
a sure amount of utils, the contingent plan, a = (a(g), a(b)), specifies an action a(m) ∈ {Bet, Sure}
conditional on good news and bad news. Let U(a(m), E) denote the utility of action a(m) under
payoff-relevant event E . The optimal plan maximizes utility from the ex-ante perspective. In an
uncertain information problem, the ex-ante utility of an agent with an ε-α-maxmin preference is

W(ψh, ψl; ε, α)·[p·U(a(g),G)+(1−p)·U(a(b), B)]+(1−W(ψh, ψl; ε, α))·[p·U(a(b),G)+(1−p)·U(a(g), B)]

if her plan of action is (Bet, Bet), (Bet, Sure) or (Sure, Sure) and

W(ψl, ψh; ε, α)·[p·U(a(g),G)+(1−p)·U(a(b), B)]+(1−W(ψl, ψh; ε, α))·[p·U(a(b),G)+(1−p)·U(a(g), B)]

if her plan is (Sure, Bet).
It’s straightforward that the payoff of (Bet, Bet) equals p and that of (Sure, Sure) equals the sure

amount u. Note that both payoffs are independent from the information accuracy. The intuition is
that if the agent’s action is unaffected by the realization of information, then the ex-ante utility is not
exposed to the uncertainty in the information. This is in contrast with the ex-post utility conditional
on the realized message. The only choice that makes the ex-post conditional evaluation independent
from the uncertainty in the information is choosing the sure amount of utils.

Since W(ψh, ψl; ε, α) ≥ 1 −W(ψl, ψh; ε, α), it can be shown by simple algebra that (Sure, Bet)
always leads to lower ex-ante utility than (Bet, Sure). Hence, I only need to consider (Bet, Bet),
(Sure, Sure) and (Bet, Sure) as the candidate optimal plans.

We know that (Sure, Sure) yields a higher utility than (Bet, Bet) if and only if u > p. Hence,
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to pin down the optimal plan for each u, we only need to find the u such that (Bet, Sure) is optimal.
The plan (Bet, Sure) yields a higher utility than (Sure, Sure) if and only if

W(ψh, ψl; ε, α) · p · (1 − u) − (1 −W(ψh, ψl; ε, α))(1 − p) · u > 0

⇐⇒ u < PrBayes(G |p, g,W(ψh, ψl; ε, α)).

Similarly, (Bet, Sure) yields a higher utility than (Bet, Bet) if and only if

u > PrBayes(G |p, b,W(ψh, ψl; ε, α)).

The two inequalities can be simultaneously satisfied if and only if (1−α)ψh +αψl > 0.5. When this
condition holds, it’s easy to check that (Bet, Sure) is indeed optimal in the interval between the two
right-hand side expressions. If we interpret the upper and lower boundaries of the interval in which
(Bet, Sure) is optimal as the “conditional evaluations” given good news and bad news, respectively,
then these “conditional evaluations” coincide exactly with the Bayesian conditional evaluations with
the information accuracy being W(ψh, ψl; ε, α).

If (1 − α)ψh + αψl < 0.5, then there is no u such that (Bet, Sure) is optimal. Hence, the agent’s
optimal plan is to not respond to the information at all: she always chooses the sure amount of utils
if u > p and always takes the bet if u < p, regardless of the realized message.

In an uncertain prior problem, the ex-ante utility of an agent with an ε-α-maxmin preference is

W(ph, pl; ε, α)·[ψ·U(a(g),G)+(1−ψ)·U(a(b),G)]+(1−W(ph, pl; ε, α))·[(1−ψ)·U(a(g), B)+(1−ψ)·U(a(b), B)].

The ex-ante expected utility of (Sure, Sure) is still u but that of (Bet, Bet) is nowW(ph, pl; ε, α).
The ex-ante expected utility of (Bet, Sure) is again always higher than that of (Sure, Bet).

We know that (Bet, Bet) yields a higher ex-ante payoff than (Sure, Sure) if u > W(ph, pl; ε, α).
Simple algebra shows that (Bet, Sure) yields a higher payoff than (Sure, Sure) if and only if

u < PrBayes(G |W(ph, pl; ε, α), g, ψ)

and (Bet, Sure) yields a higher payoff than (Bet, Bet) if and only if

u > PrBayes(G |W(pl, ph; ε, α), b, ψ).

The two inequalities above can always be compatible. Note that the two expressions on the right-
hand side are exactly the same as the conditional evaluations in the same uncertain prior problem
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under Full Bayesian updating. This suggests that for uncertain prior problems, Full Bayesian updating
and Dynamically consistent updating make the same predictions under ε-α-maxmin preferences.

The comparative statics of conditional evaluations with respect to ε and α are straightforward.

Proof of Propositions 3 and 7. In an uncertain information problem, the likelihood of message g is
p · ψ + (1 − p) · (1 − ψ). If p > 0.5, then the likelihood is increasing in ψ and thus ψh is selected.
If p < 0.5, then ψl is selected upon the realization of g. Similarly, the likelihood of message b is
p · (1 − ψ) + (1 − p) · ψ. If p > 0.5, then ψl is selected and if p < 0.5, ψh is selected. If p = 0.5,
then both ψh and ψl are retained regardless of the realized message. Uncertain prior problems are
analogous.

C.3 Updating by proxy

Gul and Pesendorfer (2018) introduces an updating rule based on the idea that the realization of
information provides ex-post randomization which hedges against uncertainty (in priors or informa-
tion accuracy) for pessimistic agents. Their rule, termed updating by proxy, only applies to Choquet
EU preferences with totally monotone capacity. A capacity ν is totally monotone if for all events
E1 and E2, ν(E1) + ν(E2) ≤ ν(E1 ∪ E2) + ν(E1 ∩ E2). The capacity that represents an ε-α-maxmin
preference in an uncertain information problem is generically not totally monotone. For example, in
an uncertain information problem, so long as α > 0.5, we have

ν({Gg}) + ν({Gg,Gb, Bg}) = p ·W(ψh, ψl; ε, α) + p + (1 − p) ·W(1 − ψl, 1 − ψh; ε, α)

< p ·W(ψl, ψh; ε, α) + p + (1 − p) ·W(1 − ψl, 1 − ψh; ε, α)

= ν({Gg, Bg}) + ν({Gg,Gb}),

which violates total monotonicity.
However, a modified version of my setting can be represented by a totally monotone capacity.

For example, in an uncertain information problem, define capacity ν̃ such that

ν̃({Gg, Bg}) = p ·W(ψh, ψl; ε, α) + (1 − p) ·W(1 − ψl, 1 − ψh; ε, α),

ν̃({Gb, Bb}) = p ·W(1 − ψl, 1 − ψh; ε, α) + (1 − p) ·W(ψh, ψl; ε, α),

and ν̃(E) = ν(E) for all the other events. It’s straightforward to check that ν̃ is a totally monotone
capacity. The intuition is that ν̃ represents a settingwhere the information accuracy levels conditional
on G and B can be different and each of them can be either ψh or ψl.
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Under updating by proxy, the capacity of event E conditional on event F is

νUbP(E |F) :=
ρE∪F

c

ν (E ∩ F)
ρSν (F)

,

where ρCν (A) =
∑

s∈A ρ
C
ν (s) and ρCν (s) is the Shapley value of s in the “cooperative game" C. For

details, see Gul and Pesendorfer (2018). After a few steps of algebra, it can be derived that a (weakly)
pessimistic agent (α ≥ 0.5) who uses updating by proxy evaluates the bet by

u = νUbP({Gm}|{Gm, Bm}) = PrBayes(G |p,m,W(ψh, ψl; ε, 0.5))

conditional on realized message m ∈ {g, b}.
Intuitively, a pessimistic agent no longer weights different levels of accuracy differently because

the uncertainty is hedged against after the realization of information. The only remaining deviation
from simple information is the ε weight on 0.5 caused by insensitivity.

In a similarly modified uncertain prior problem, a (weakly) pessimistic agent who uses updating
by proxy evaluates the bet by

u = PrBayes(G |W(ph, pl; ε, 0.5),m, ψ)

conditional on realized message m ∈ {g, b}. The following proposition summarizes the results.

Proposition 8 Suppose a (weakly) pessimistic ε-α-maxmin agent (α ≥ 0.5) uses updating by proxy.
In a modified uncertain information problem,

1. if ε = 0 and α = 0.5, then her conditional evaluations coincide with the Bayesian evaluations
conditional on information with accuracy level ψh+ψl

2 ;

2. as ε, the measure of insensitivity, increases, the conditional evaluations become closer to p;

3. the measure of pessimism α does not affect conditional evaluations.

In a modified uncertain prior problem,

1. if ε = 0 and α = 0.5, then her conditional evaluations coincide with the Bayesian evaluations
given simple prior ph+pl

2 ;

2. as ε, the measure of insensitivity, increases, the conditional evaluations become closer to ψ
given good news and 1 − ψ given bad news;

3. the measure of pessimism α does not affect conditional evaluations.
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D An axiomatic foundation of ε-α-maxmin EU
In this appendix, I provide an axiomatic foundation for the ε-α-maxmin expected utility preference.
I only axiomatize the model in a restricted domain that closely resembles my experiment. A
full-fledged revealed preference analysis of the model in a more general setting is left for future
research.

There are two events, E and Ec. An act assigns each event a simple lottery. Agents’ evaluations
of simple lotteries satisfy the vonNeumann-Morgenstern (vNM) expected utility axioms, so I identify
each simple lottery with its expected utility. Assume that utility is bounded and normalize the range
to the interval [0, 1]. An act also assigns one or two probability distributions to the events. So in this
sense, the act is objective. A simple act is denoted as (p; v1, v2), where p is the (single) probability
of E , and v1 and v2 are the utility of the two simple lotteries assigned to E and Ec, respectively. An
uncertain act is denoted as (p1 or p2; v1, v2), where p1 and p2 are the two possible probabilities of E .
I impose no order on p1 and p2; in other words, “p1 or p2” is the same as “p2 or p1.” I also allow for
the possibility that p1 = p2. v1 and v2 have the same meanings as in simple acts.

Here are a couple of remarks on the framework. The framework is adapted from the objective
ambiguity framework of Olszewski (2007). There are two differences. First, I treat the simple
act (p; v1, v2) and the uncertain act (p or p; v1, v2) as different entities. This is intended to capture
the idea that multiple probabilities can cause confusion or inattention, even when the multiple
probabilities are the same. Second, I make explicit the two events E and Ec and only allow for
multiple probabilities on these two events (but not within the lottery assigned to each event). This
is to stay close to my experiment where there are only uncertain probabilities from one source of
uncertainty.

Now I introduce the axioms.

Axiom 1 (Simple vNM)
(p; v1, v2) ∼ (1; pv1 + (1 − p)v2, 0).

Axiom 2 (Event C-Independence) If (p1 or p2; v1, v2) % (q1 or q2; v1, v2), then for all k ∈ [0, 1]
and l ∈ [0, 1]

(kp1 + (1 − k)l or kp2 + (1 − k)l; v1, v2) % (kq1 + (1 − k)l or kq2 + (1 − k)l; v1, v2).

Axiom 3 (Prize C-Independence) If (p1 or p2; v1, v2) % (q1 or q2;w1,w2), then for all k ∈ [0, 1]
and l ∈ [0, 1]

(p1 or p2; kv1 + (1 − k)l, kv2 + (1 − k)l) % (q1 or q2; kw1 + (1 − k)l, kw2 + (1 − k)l).
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Axiom 4 (Simple-Uncertain Independence) If (1; v1, 0) ∼ (1 or 0;w1, 0)and (1; v2, 0) ∼ (1 or 0;w2, 0),
then (1; kv1 + (1 − k)v2, 0) ∼ (1 or 0; kw1 + (1 − k)w2, 0) for all k ∈ [0, 1].

Axiom 5 (Event Continuity) For all p1 and p2, {(q1, q2)|(q1 or q2; v1, v2) � (p1 or p2; v1, v2)} and
{(q1, q2)|(q1 or q2; v1, v2) ≺ (p1 or p2; v1, v2)} are open in [0, 1]2.

Axiom 6 (Prize Continuity) For all v1 and v2, {(w1,w2)|(1 or 0;w1,w2) � (1 or 0; v1, v2)} and
{(w1,w2)|(1 or 0;w1,w2) ≺ (1 or 0; v1, v2)} are open in [0, 1]2.

Axiom 7 (Event Monotonicity) If v1 > v2 and p > q, then (p; v1, v2) > (q; v1, v2)and (p or l; v1, v2) ≥
(q or l; v1, v2) for all l ∈ [0, 1].

Axiom 8 (Prize Monotonicity) If v > w, then (1; v, l) � (1;w, l) and (1 or 0; v, l) % (1 or 0;w, l)
for all l ∈ [0, 1].

Axiom 9 (Symmetric Events)

(p1 or p2; v1, v2) ∼ (1 − p1 or 1 − p2; v2, v1)

for all p1, p2 ∈ [0, 1] and v1, v2 ∈ [0, 1].

Axiom 10 (Constant Act Equivalence)

(p; v, v) ∼ (p1 or p2; v, v)

for all p, p1, p2 ∈ [0, 1] and v ∈ [0, 1].

Axiom 11 (Insensitivity) (0; 1, 0) - (0 or 0; 1, 0) and (1; 1, 0) % (1 or 1; 1, 0).

Axiom 12 (Centering) (0.5; v1, v2) ∼ (0.5 or 0.5; v1, v2).

Theorem 1 A preference relation on simple and uncertain acts % satisfies Axioms 1-12 if and only
if there exist α ∈ [0, 1] and ε ∈ [0, 1] such that the preference can be represented by the following
utility function:

U(p; v1, v2) = pv1 + (1 − p)v2,

U(p1 or p2; v1, v2) = [(1−ε)[(1−α)p1+αp2]+ε ·0.5]v1+ (1−[(1−ε)[(1−α)p1+αp2]+ε ·0.5])v2,

assuming without loss of generality that p1v1 + (1 − p1)v2 ≥ p2v1 + (1 − p2)v2.
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Proof By Prize Monotonicity and Simple vNM, the preference over simple acts can be represented
as stated in the Theorem.

By Insensitivity, Centering and Event Monotonicity,

(0; 1, 0) - (0 or 0; 1, 0) - (0.5 or 0.5; 1, 0) ∼ (0.5; 1, 0).

By Event Continuity and Event Monotonicity, there exists ε ∈ [0, 1] such that

(0 or 0; 1, 0) ∼ (ε · 0.5; 1, 0).

Similarly, there exists ε′ ∈ [0, 1] such that

(1 or 1; 1, 0) ∼ (1 − ε′ · 0.5; 1, 0).

By Simple-Uncertain Independence,

(0.5 or 0.5; 1, 0) ∼ (0.5 + 0.5 · ε − ε
′

2
; 1, 0).

But since (0.5 or 0.5; 1, 0) ∼ (0.5; 1, 0) by Centering, we have ε′ = ε by Event Monotonicity. Hence
by Simple-Uncertain Independence,

(p or p; 1, 0) ∼ ((1 − ε)p + ε · 0.5; 1, 0). (2)

Now consider the uncertain act (1 or 0; 1, 0). By Event Monotonicity,

(1 or 1; 1, 0) % (1 or 0; 1, 0) % (0 or 0; 1, 0).

By Event Continuity and Event Monotonicity, there exists α ∈ [0, 1] such that

(1 or 0; 1, 0) ∼ (1 − α or 1 − α; 1, 0).

Now let us consider the uncertain act (p1 or p2; 1, 0), assuming p1 ≥ p2. Since (1 or 0; 1, 0) ∼
(1 − α or 1 − α; 1, 0), by Event C-Independence,

(k or 0; 1, 0) ∼ (k(1 − α) or k(1 − α); 1, 0), (3)

(1 or k; 1, 0) ∼ (1 − α + kα or 1 − α + kα; 1, 0). (4)
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If (1 − p1)/p2 ≥ α/(1 − α), then substitute k = α
1−α p2 + p1 into (3) and we get

( α

1 − α p2 + p1 or 0; 1, 0) ∼ (αp2 + (1 − α)p1 or αp2 + (1 − α)p1; 1, 0).

It’s easy to show that the point (p1, p2) is a convex combination of ( α1−α p2 + p1, 0) and (αp2 + (1 −
α)p1, αp2 + (1 − α)p1). Hence, again by Event C-Independence,

(p1 or p2; 1, 0) ∼ (αp2 + (1 − α)p1 or αp2 + (1 − α)p1; 1, 0).

If (1 − p1)/p2 < α/(1 − α), then substitute k = p2 − 1−α
α (1 − p1) into (4) and we get

(1 or p2 −
1 − α
α
(1 − p1); 1, 0) ∼ (p2 + (1 − α)p1 or p2 + (1 − α)p1; 1, 0).

Since the point (p1, p2) is a convex combination of ( α1−α p2+p1, 0) and (αp2+(1−α)p1, αp2+(1−α)p1),
by Event C-Independence,

(p1 or p2; 1, 0) ∼ (αp2 + (1 − α)p1 or αp2 + (1 − α)p1; 1, 0). (5)

The same steps can be analogously applied to the uncertain acts (p1 or p2; 0, 0), (p1 or p2; 1, 1)
and (p1 or p2; 1, 0) to determine the v such that (p1 or p2; v1, v2) ∼ (p1 or p2; v, v) for any 0 ≤ p2 ≤
p1 ≤ 1 and 0 ≤ v2 ≤ v1 ≤ 1. By Prize Monotonicity and Prize Continuity, there exists β ∈ [0, 1]
such that

(p1 or p2; 1, 0) ∼ (p1 or p2; 1 − β, 1 − β).

ApplyingPrizeC-Independence andPrizeMonotonicity in a similarway as in the previous paragraph,
we obtain

(p1 or p2; v1, v2) ∼ (p1 or p2; βv2 + (1 − β)v1, βv2 + (1 − β)v1).

Now I solve for β. By the indifference relations (5) and (2),

(p1 or p2; 1, 0) ∼ ((1 − ε)[αp2 + (1 − α)p1] + ε · 0.5; 1, 0).

By Constant Act Equivalence and Simple vNM,

(p1 or p2; β, β) ∼ (1; β, β) ∼ (β; 1, 0).
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Since (p1 or p2; 1, 0) ∼ (p1 or p2; β, β), by Prize Monotonicity, we have

β = (1 − ε)[αp2 + (1 − α)p1] + ε · 0.5.

Hence,
(p1 or p2; v1, v2) ∼ ((1 − ε)[αp2 + (1 − α)p1] + ε · 0.5; v1, v2).

For v1 < v2, by Symmetric Events,

(p1 or p2; v1, v2) ∼ (1 − p1 or 1 − p2; v2, v1) ∼ ((1 − ε)[α(1 − p2) + (1 − α)(1 − p1)] + ε · 0.5; v2, v1).

By Simple vNM, the preference over uncertain acts can be represented as stated in the Theorem.

E Theories based on the smooth preference
In this appendix, I consider alternative models of updating with uncertain information and uncertain
priors that are based on the smooth model (Klibanoff et al., 2005). In a decision problem without
updating in my experiment, the evaluation of a bet with uncertain prior (ph or pl) under the smooth
model is

φ−1 (0.5φ(ph) + 0.5φ(pl))

where φ(·) is an increasing function. For each prior p, the agent evaluates the bet using the standard
von Neumann-Morgenstern (vNM) expected utility. Then the agent assigns each vNM utility index a
second-order utility φ(·), and then she aggregates the second-order utilities by taking the expectation.
(The φ−1 is for the purpose of normalization.) The second-order utility function φ(·) summarizes an
agent’s attitude toward uncertainty. If φ is concave, then the agent behaves pessimistically in face of
uncertainty. The opposite is true if φ is convex. The smooth model coincides with standard EUwhen
φ is linear. The maxmin model (Gilboa and Schmeidler, 1989) is the limit case when φ becomes
infinitely concave. However, the smooth model cannot capture uncertainty-induced insensitivity.
Hence, I will only discuss the implications of the concavity of φ in belief updating problems. I now
define a comparative notion of concavity which I will use in the rest of this section: function φ2 is
more concave than function φ1 if φ2(φ−1

1 (·)) is concave.

E.1 Recursive smooth preferences

In an uncertain information problem where the prior is p and the information accuracy is either
ψh or ψl, an agent with a recursive smooth preference (Klibanoff et al., 2009) applies Bayes’s
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rule to calculate the posterior distribution over the outcomes given each possible level of accuracy,
PrBayes(G |p,m, ψi), as well as the updated distribution over levels of accuracy, PrBayes(ψi |p,m).46
Then, to obtain the evaluation of the bet conditional on message m, the agent calculates the vNM
expected utility for each posterior and aggregate them up by taking the expectation over the second-
order utility function φ using the updated distribution over levels of accuracy:

φ−1
(
PrBayes(ψh |p,m) · φ

(
PrBayes(G |p,m, ψh)

)
+ PrBayes(ψl |p,m) · φ

(
PrBayes(G |p,m, ψl)

))
.

If φ is linear, then the evaluation of the bet after observing message m equals PrBayes(G |p,m, (ψh +
ψl)/2), same as the conditional evaluation when the accuracy of information equals (ψ1 + ψ2)/2
with certainty. In the extreme case of maxmin preferences, i.e. when φ becomes infinitely concave,
conditional smooth preference is equivalent to Full Bayesian updating (Pires, 2002).

Similarly, in an uncertain prior problem, the agent calculates the Bayesian posterior given
each possible prior and aggregate them up using the second-order utility function and the updated
likelihood of each prior.

The following proposition summarizes the properties of conditional evaluations under recursive
smooth preferences.

Proposition 9 1. If an agent has a recursive smooth preference and her second-order utility
function φ is linear, her conditional evaluations of a bet in an uncertain information problem
are the same as when the accuracy level of the information is (ψh + ψl)/2 with certainty, and
her conditional evaluations of a bet in an uncertain prior problem are the same as when the
prior is (ph + pl)/2 with certainty.

2. As φ becomes more concave, conditional evaluations of the bet decrease.

Proof I only prove the second part of the proposition for uncertain information problems. If φ1 is
more compound-averse than φ2, then φ1(φ−1

2 ) is strictly concave. Hence, by Jensen’s Inequality,

φ1

(
φ−1

2

(∑
i=h,l

φ2

(
PrBayes(G |p,m, ψi)PrBayes(ψi |p,m)

)))
≥

∑
i=h,l

φ1

(
PrBayes(G |p,m, ψi)PrBayes(ψi |p,m)

)
,

=⇒φ−1
2

(∑
i=h,l

φ2

(
PrBayes(G |p,m, ψi)PrBayes(ψi |p,m)

))
≥ φ−1

1

(∑
i=h,l

φ1

(
PrBayes(G |p,m, ψi)PrBayes(ψi |p,m)

))
.

46PrBayes(ψh |p, g) = pψh+(1−p)(1−ψh )
pψh+(1−p)(1−ψh )+pψl+(1−p)(1−ψl ) , PrBayes(ψh |p, b) = p(1−ψh )+(1−p)ψh

p(1−ψh )+(1−p)ψh+p(1−ψl )+(1−p)ψl
.
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E.2 Dynamically consistent updating

Under Dynamically consistent updating, the agent forms a contingent plan of actions before the
message realizes and executes the plan resolutely after observing the message. In our example
where the agent chooses between a bet and a sure amount of utils, the contingent plan, (a(g), a(b)),
specifies an action a(m) ∈ {Bet, Sure} conditional on each of the two possible messages. The
optimal plan maximizes utility from the ex-ante perspective. In an uncertain information problem,
the agent with a smooth preference optimizes her plan by solving the following problem:

max
(a(g),a(b))

φ−1

(∑
i=h,l

.5 · φ (p · (ψiU(a(g),G) + (1 − ψi)U(a(b),G)) + (1 − p) · (ψiU(a(b), B) + (1 − ψi)U(a(g), B)))
)
,

where U(a, s) is the util that the agent receive if the outcome of the bet is s and she takes action a.
It’s straightforward that the payoff of (Bet, Bet) equals p and that of (Sure, Sure) equals the sure
amount, both of which independent from the uncertainty in information accuracy.

If φ is linear, then the optimal contingent plan is characterized by two thresholds. If the sure
amount of util u is no smaller than PrBayes(G |g, (ψh + ψl)/2), then (Sure, Sure) is optimal. If
u ∈

[
PrBayes(G |g, (ψh + ψl)/2), PrBayes(G |b, (ψh + ψl)/2)

]
, then (Sure, Bet) is optimal. If u is no

more than PrBayes(G |b, (ψh + ψl)/2), then (Bet, Bet) is optimal. Note that the actions prescribed
by the optimal contingent plan coincide with the ex-post optimal action under the recursive smooth
preference. This shows that with linear second-order utility function and Bayesian updating, there
is no conflict between the ex-ante preference and the ex-post preference.

Now we consider the case that φ is concave. For each sure amount of utils u, an agent using
Dynamically consistent updating chooses the plan of action that leads to the highest ex-ante utility
among (Sure, Sure), (Bet, Sure), (Sure, Bet) and (Bet, Bet). It’s straightforward to show that
(Sure, Bet) can never be optimal, so we are left with the other three plans. The comparison between
(Sure, Sure) and (Bet, Bet) is simple. The former generates higher utility than the latter if and only
if u > p. To compare these two plans with (Bet, Sure), we first invoke Jensen’s Inequality to obtain
an upper bound for the utility of (Bet, Sure).

φ−1

(∑
i=h,l

0.5 · φ (p · (ψi + (1 − ψi)u) + (1 − p) · ψiu)
)
<

∑
i=h,l

0.5·(p · (ψi + (1 − ψi)u) + (1 − p) · ψiu) .

(6)
For any u ≤ PrBayes(G |b, (ψh + ψl)/2), the right-hand side of (6) is smaller than p. This implies
that for this range of u, (Bet, Bet) is optimal. For any u ≥ PrBayes(G |g, (ψh +ψl)/2), the right-hand
side of (6) is smaller than u. This implies that for this range of u, (Sure, Sure) is optimal. Hence, if
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(Bet, Sure) is ever optimal, it has to be in the region

u ∈
(
PrBayes(G |g, (ψh + ψl)/2), PrBayes(G |b, (ψh + ψl)/2)

)
.

Remember that for an agent with linear second-order utility function, (Bet, Sure) is optimal exactly in
the closed interval u ∈

[
PrBayes(G |g, (ψh + ψl)/2), PrBayes(G |b, (ψh + ψl)/2)

]
. This demonstrates

that an pessimistic agent using Dynamically consistent updating is averse to conditioning her action
on the realized message because doing so exposes her ex-ante utility to the uncertainty in the
information accuracy.

Ifψl < 0.5 < ψh and (ψh+ψl)/2 is sufficiently close (but not necessarily equal) to 0.5, then a pes-
simistic agent using Dynamically consistent updating may never condition her action on the realized
message. In other words, the agent may never find (Bet, Sure) optimal, whatever is the sure amount.
To see this, note that ifψh+ψl = 1, then the interval

(
PrBayes(G |b, (ψh + ψl)/2), PrBayes(G |g, (ψh + ψl)/2)

)
is empty. So even if we perturb ψh and ψl so that they don’t add up to 1 exactly, the interval is still
empty, which means that (Bet, Sure) is never optimal.

When (Bet, Sure) is optimal under some values of u, denote the largest such value by u(g) and
the smallest by u(b). I interpret these two values as the evaluations of the bet conditional on message
g and b, respectively. Now I show that u(g) decreases and u(b) increases as the second-order utility
function becomes more concave.

If φ1 is more concave than φ2, then φ1(φ−1
2 ) is strictly concave. Hence, for all u such that

φ2(u) ≥
∑
i=h,l

0.5 · φ2 (p · (ψi + (1 − ψi)u) + (1 − p) · ψiu) ,

we have

φ1(u) ≥ φ1

(
φ−1

2

(∑
i=h,l

0.5 · φ2 (p · (ψi + (1 − ψi)u) + (1 − p) · ψiu)
))

>
∑
i=h,l

0.5 · φ1 (p · (ψi + (1 − ψi)u) + (1 − p) · ψiu) .

The second inequality invokes Jensen’s Inequality. Denote by u1(g) and u2(g) the largest values of
u such that (Bet, Sure) is optimal when the second-order utility function is φ1 and φ2, respectively.
Then we have u1(g) < u2(g). We can similarly define u1(b) and u2(b) and prove that u1(b) < u2(b).

In a problem with uncertain prior (ph or pl) and simple information with accuracy ψ, an agent
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with smooth preference who uses Dynamically consistent updating solves the following problem:

max
(a(g),a(b))

φ−1

(∑
i=h,l

0.5 · φ (pi · (ψU(a(g),G) + (1 − ψ)U(a(b),G)) + (1 − pi) · (ψU(a(b), B) + (1 − ψ)U(a(g), B)))
)
.

The ex-ante payoff of the plan (Bet, Bet) is φ−1(0.5φ(ph) + 0.5φ(pl)) and that of (Sure, Sure)
is the sure amount of utils u. Similar as before, (Sure, Bet) is never optimal, so we only consider
the other three plans. Suppose that the second-order utility function is strictly concave. Plugging
in u = PrBayes(G |(ph + pl)/2, g, ψ) to the ex-ante payoff of (Sure, Bet) and applying Jensen’s
Inequality, we get

φ−1

(∑
i=h,l

0.5 · φ (pi · (ψ + (1 − ψ)u) + (1 − pi) · ψu)
)
<

∑
i=h,l

0.5·(pi · (ψ + (1 − ψ)u) + (1 − pi) · ψu) = u.

This implies that for an uncertainty-averse agent, the threshold between (Sure, Sure) and (Bet, Sure)
is lower than PrBayes(G |(ph + pl)/2, g, ψ). Moreover, it can be shown that this threshold becomes
lower as φ becomes more concave.

Similarly, plugging in u = PrBayes(G |(ph + pl)/2, b, ψ) and applying Jensen’s Inequality, we
obtain that

φ−1

(∑
i=h,l

0.5 · φ (pi · (ψ + (1 − ψ)u) + (1 − pi) · ψu)
)
> φ−1(0.5φ(ph) + 0.5φ(pl)).

This implies that the threshold between (Bet, Sure) and (Bet, Bet) is lower than PrBayes(G |(ph +
pl)/2, b, ψ).

It can also be shown that as φ becomes more concave, the threshold between (Sure, Sure) and
(Bet, Sure), u(g), decreases. If φ1 is more concave than φ2, then φ1(φ−1

2 ) is strictly concave. Hence,
for all u such that

φ2(u) ≥
∑
i=h,l

0.5 · φ2 (pi · (ψ + (1 − ψ)u) + (1 − pi) · ψu) ,

we have

φ1(u) ≥ φ1

(
φ−1

2

(∑
i=h,l

0.5 · φ2 (pi · (ψ + (1 − ψ)u) + (1 − pi) · ψu)
))

>
∑
i=h,l

0.5 · φ1 (pi · (ψ + (1 − ψ)u) + (1 − pi) · ψu) .

80



The second inequality invokes Jensen’s Inequality. Denote by u1(g) and u2(g) the largest values of
u such that (Bet, Sure) is optimal when the second-order utility function is φ1 and φ2, respectively.
Then we have u1(g) < u2(g).

The following proposition summarizes the results above.

Proposition 10 1. If an agent with smooth preference uses Dynamically consistent updating and
her second-order utility function φ is linear, then her conditional evaluations of a bet in an
uncertain information problem are the same as when the information accuracy is (ψh +ψl)/2
with certainty. Her conditional evaluations of a bet in an uncertain prior problem are also
identical to the case where the prior is (ph + pl)/2 with certainty.

2. In an uncertain information problem under Dynamically consistent updating, as the second-
order utility function φ(·) becomes more concave, the evaluation conditional on good news,
u(g), decreases and that conditional on bad news, u(b), increases.

3. In an uncertain prior problemunderDynamically consistent updating, if the second-order util-
ity function is concave, then u(g) < PrBayes(G |(ph+pl)/2, g, ψ) and u(b) < PrBayes(G |(ph+
pl)/2, b, ψ). As the second-order utility function φ(·) becomes more concave, u(g) decreases.

E.3 Maximum likelihood updating

Similar as with ε-α-maxmin preferences, attitudes toward uncertainty generically do not affect the
conditional evaluations under Maximum likelihood updating when only one accuracy level or one
prior has the highest likelihood given the realized message. When there is a tie, Maximum likelihood
updating coincides with the recursive smooth preference.

E.4 Pre-screening

Similar to Maximum likelihood updating, in uncertain information problems, Pre-screening (Cheng
and Hsiaw, 2018) also puts excessive weights on more likely levels of accuracy conditional on the
message, but it is less extreme in doing so. Specifically, a Pre-screener’s posterior distribution over
levels of accuracy conditional on the realized message is given by

PrPS(ψh |p, g) =
PrBayes(ψh |p, g) · pψh + (1 − PrBayes(ψh |p, g))(1 − p)(1 − ψh)∑

i=h,l (PrBayes(ψi |p, g) · pψi + (1 − PrBayes(ψi |p, g))(1 − p)(1 − ψi))
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and

PrPS(ψh |p, b) =
PrBayes(ψh |p, b) · pψh + (1 − PrBayes(ψh |p, b))(1 − p)(1 − ψh)∑

i=h,l (PrBayes(ψi |p, b) · pψi + (1 − PrBayes(ψi |p, b))(1 − p)(1 − ψi))
.

Intuitively, a Pre-screener uses the realizedmessage twice when updating her belief over the accuracy
levels. This leads to confirmation bias. If p > 0.5, then PrPS(ψh |p, g) > PrBayes(ψh |p, g) and
PrPS(ψh |p, b) < PrBayes(ψh |p, b); if, instead, p < 0.5, then PrPS(ψh |p, g) < PrBayes(ψh |p, g)
and PrPS(ψh |p, b) > PrBayes(ψh |p, b). A pre-screener’s posterior beliefs over the accuracy levels
coincide with a Bayesian agent’s when p = 0.5.

Same as in recursive smooth preferences and Maximum likelihood updating, a Pre-screener’s
posterior distribution over the outcomes given each possible level of accuracy is equal to the correct
Bayesian posterior PrBayes(·|p,m, ψi). Then the Pre-screener’s evaluation of the bet conditional on
message m is given by

φ−1
(
PrPS(ψh |p,m) · φ

(
PrBayes(G |p,m, ψh)

)
+ PrPS(ψl |p,m) · φ

(
PrBayes(G |p,m, ψl)

))
.

Combining Pre-screening with smooth preferences sometimes leads to ambiguous implications
on the conditional evaluations of bets because confirmation bias and pessimism/optimism may have
opposite effects. The following proposition summarizes the unambiguous implications.

Proposition 11 1. If p < 0.5 and the second-order utility function φ is concave, then a Pre-
screener’s conditional evaluations of the bet are lower than the case where the accuracy level
of the information is known to be (ψh + ψl)/2.

2. If p > 0.5 and the second-order utility function φ is convex, then a Pre-screener’s conditional
evaluations of the bet are higher than the case where the accuracy level of the information is
known to be (ψh + ψl)/2.

3. If p = 0.5, then Pre-screening coincides with the recursive smooth preference.

4. As φ becomes more concave, the conditional evaluations of the bet become lower.

F Segal’s two-stage model
Segal (1987, 1990) proposes a two-stage model of uncertain bets. In a decision problem without
updating, the evaluation of a bet with simple prior p is f (p), where f : [0, 1] → [0, 1] is an
increasing function which satisfies f (0) = 0 and f (1) = 1. The function f is interpreted as a
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probability weighting function. The utility of a bet with uncertain prior (ph or pl) under the Segal’s
model is

f (0.5) f (ph) + (1 − f (0.5)) f (pl).

The agent calculates the anticipated utility given each prior: f (ph) and f (pl). Then she aggregates
the anticipated utilities given each prior by applying the same anticipated utility on the second stage.

In Segal’s model, the probability weighting function f summarizes the attitude toward uncer-
tainty. Hence, I investigate what properties of f can generate the two-fold pattern of uncertainty-
induced aversion and insensitivity in problems with uncertain priors without additional information.
Consider two bets. The first one’s odds is either 90% or 50%, and the second one’s odds is either
50% or 10%. In my experiment, the CE of the first bet is typically lower than its simple counterpart
(p = 70%) and the CE of the second bet is about the same as that of a 30%-odds simple bet. This
implies that the modal preference satisfies

f (0.5) f (0.9) + (1 − f (0.5)) f (0.5) < f (0.7)

and
f (0.5) f (0.5) + (1 − f (0.5)) f (0.1) = f (0.3).

If f (0.5) ≥ 0.5, then f (0.7) > 0.5( f (0.9) + f (0.5)); if f (0.5) ≤ 0.5, then f (0.3) ≤ 0.5( f (0.5) +
f (0.1)). This appears at odds with the typically observed inverse S-shaped probability weighting
function.

One natural way to incorporate belief updating into Segal’s model is to apply Bayes’ rule and
assume that the probability weighting function f is unaffected by information.47 Specifically, I
assume that the utility of a simple bet with prior p conditional on information whose accuracy is
either ψh or ψl is

f
(
PrBayes(ψh |p, g)

)
f
(
PrBayes(G |p, g, ψh)

)
+
(
1 − f

(
PrBayes(ψh |p, g)

))
f
(
PrBayes(G |p, g, ψl)

)
for good news and

f
(
PrBayes(ψl |p, b)

)
f
(
PrBayes(G |p, b, ψl)

)
+

(
1 − f

(
PrBayes(ψl |p, b)

))
f
(
PrBayes(G |p, b, ψh)

)
for bad news. The conditional valuationwhen the information accuracy is (ψh+ψl)/2 is f

(
PrBayes(G |p,m, (ψh + ψl)/2)

)
,

m ∈ {g, b}. If f is convex, then by Jensen’s inequality, the evaluations conditional on uncertain

47I am unaware of any formal treatment of belief updating under probability weighting.
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information is lower than those conditional on the corresponding simple information. If f is concave,
then the reverse is true. However, it’s unclear how insensitivity is related to the comparison.

Similarly, the utility of a bet with uncertain prior conditional on simple message m is

f
(
PrBayes(ph |m, ψ)

)
f
(
PrBayes(G |ph,m, ψ)

)
+
(
1 − f

(
PrBayes(ph |m, ψ)

))
f
(
PrBayes(G |pl,m, ψ)

)
.

Jensen’s inequality can be similarly applied to derive the relation between the convexity of f and
pessimism.

G Additional results on the correlation between different
kinds of uncertainty attitudes

In this section, I derive tests of correlations between attitudes toward different kinds of uncertainty
for eachmodel considered in this paper. The tests are based on equations between signs of premiums,
which are summarized in Table G.1. For example, the left- and upper-most cell states that if an
agent’s attitudes toward uncertain priors (in problems without updating) and uncertain information
can be described by the same ε-α-maxmin preference and the agent uses Full Bayesian updating
adapted to the generalized Bayes’ rule, then for all p ∈ (0, 1), 0 < x < 1 and 0 < y < 1 such that
x + y ≥ 1, the following two equations hold: SP(p, g, x or y) = SP(x or y) and SP(p, b, x or y) =
SP(1− y or 1− x). So to test that subjects’ attitudes toward uncertainty in priors (in problems without
updating) and uncertainty in information accuracy are correlated under the assumptions of ε-α-
maxmin preference and the adapted Full Bayesian updating, I compute the correlation coefficients
between SP(p, g, x or y) and SP(x or y) and between SP(p, b, x or y) and SP(1 − y or 1 − x).

In the rest of this section, I will prove the equations in Table G.1 for each model.
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Uncertain priors w/o updating
and uncertain info

Uncertain priors w/o updating
and uncertain priors with updating

Uncertain priors with updating
and uncertain info

FB
(If x + y ≥ 1)
SP(p, g, x or y) = SP(x or y)
SP(p, b, x or y) = SP(1 − y or 1 − x)

SP(x or y,m, ψ) = SP(x or y)
(If x + y ≥ 1)
SP(p, g, x or y) = SP(x or y,m, ψ)
SP(p, b, x or y) = SP(1 − y or 1 − x,m, ψ)

DC
(If x + y > 1)
SP(p, g, x or y) = SP(x or y)
SP(p, b, x or y) = −SP(x or y)

SP(x or y,m, ψ) = SP(x or y)
(If x + y > 1)
SP(p, g, x or y) = SP(x or y,m, ψ)
SP(p, b, x or y) = −SP(x or y,m, ψ)

ML SP(50%, g, 90% or 50%) = SP(90% or 50%)
SP(50%, b, 90% or 50%) = SP(10% or 50%)

SP(90% or 50%,−, 50%) = SP(90% or 50%)
SP(10% or 50%,−, 50%) = SP(10% or 50%)

SP(50%, g, 90% or 50%)
= SP(90% or 50%,−, 50%)
SP(50%, b, 90% or 50%)
= SP(10% or 50%,−, 50%)

R-S SP(50%, g, 90% or 50%) = SP(90% or 50%)
SP(50%, b, 90% or 50%) = SP(10% or 50%)

SP(90% or 50%,−, 50%) = SP(90% or 50%)
SP(10% or 50%,−, 50%) = SP(10% or 50%)

(If x + y ≥ 1 and z ≥ 50%)
SP(z, g, x or y) = SP(x or y, g, z)
SP(z, b, x or y) = SP(1 − y or 1 − x, g, z)
SP(1 − z, g, x or y) = SP(x or y, b, z)
SP(1 − z, b, x or y) = SP(1 − y or 1 − x, b, z)

DC-S - - (If x + y > 1 and z ≥ 50%)
SP(z, g, x or y) = SP(x or y, g, z)

ML-S SP(50%, g, 90% or 50%) = SP(90% or 50%)
SP(50%, b, 90% or 50%) = SP(10% or 50%)

SP(90% or 50%,−, 50%) = SP(90% or 50%)
SP(10% or 50%,−, 50%) = SP(10% or 50%)

SP(50%, g, 90% or 50%)
= SP(90% or 50%,−, 50%)
SP(50%, b, 90% or 50%)
= SP(10% or 50%,−, 50%)

PS-S SP(50%, g, 90% or 50%) = SP(90% or 50%)
SP(50%, b, 90% or 50%) = SP(10% or 50%) - -

Table G.1: Summary of theoretical predictions on the relations between signs of premiums of different kinds of uncertainty

Notes: This table summarizes the relations between the signs of premiums of different kinds of uncertainty as predicted by several theories if attitudes toward different
kinds of uncertainty are described by the same ε-α-maxmin preference or the same smooth preference. “FB": Full Bayesian updating adapted to the generalized Bayes’
rule coupled with ε-α-maxmin preferences. “DC": Dynamically consistent updating adapted to the generalized Bayes’ rule coupled with ε-α-maxmin preferences. “ML":
Maximum likelihood updating coupled with ε-α-maxmin preferences. “R-S": Recursive smooth preference. “DC-S": Smooth preference with Dynamically consistent
updating. “ML-S": Smooth preference with Maximum likelihood updating. “PS-S": Smooth preference with pre-screening. If no restriction is mentioned, p, ψ, x, y, z are
arbitrary numbers in the interval (0, 1), and m is an arbitrary message (g or b). Equations under “Uncertain priors w/o updating and uncertain info" are equality relations
predicted by the corresponding theory if the attitudes toward uncertainty in priors (without information) and the attitudes toward uncertainty in information are described
by the same preference. The other two columns are analogous.
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G.1 ε-α-maxmin preferences

Suppose an agent’s attitudes toward uncertain priors (in problems without updating) is described by
an ε-α-maxmin preference, then her CE of an uncertain bet is given by

CE(ph or pl) = M (W(ph, pl; ε, α)) ,

where M : [0, 1] → R+ is an increasing function that maps the (subjective) winning odds of a
bet to its CE. Suppose that the same ε-α-maxmin preference also describes her attitudes toward
uncertainty in information accuracy and that she follows the Full Bayesian updating rule adapted to
the generalized Bayes’ rule. Then the agent’s CE for a simple bet is

CE(p, g, ψh or ψl) = M
(
PrGB(G |p, g,W(ψh, ψl; ε, α))

)
conditional on uncertain good news and

CE(p, b, ψh or ψl) = M
(
PrGB(G |p, b,W(ψl, ψh; ε, α))

)
conditional on uncertain bad news. Note that M(·) is increasing and the generalized Bayesian
posterior is increasing in information accuracy conditional on good news and decreasing conditional
on bad news. This implies that if 0 ≤ y < x ≤ 1 and x + y ≥ 1, then for any p,

SP(p, g, x or y) = sign
(
M

(
PrGB(G |p, g, x + y

2
)
)
− M

(
PrGB(G |p, g,W(x, y; ε, α))

))
= sign

(
M

( x + y

2

)
− M (W(x, y; ε, α))

)
= SP(x or y) (7)

and

SP(p, g, x or y) = sign
(
M

(
PrGB(G |p, b, x + y

2
)
)
− M

(
PrGB(G |p, b,W(y, x; ε, α))

))
= sign

(
M

(
PrGB(G |p, g, 1 − x + y

2
)
)
− M

(
PrGB(G |p, g, 1 −W(y, x; ε, α))

))
= sign

(
M

(
1 − y + 1 − x

2

)
− M (W(1 − y, 1 − x; ε, α))

)
= SP(1 − y or 1 − x). (8)

Suppose, instead, that the agent uses Dynamically consistent updating adapted to the generalized
Bayes’ rule. Then the hypothesis that the same ε-α-maxmin preference applies to both uncertain
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priors (in problems without updating) and uncertain information implies that the CE of a simple bet
conditional on uncertain information is

CE(p,m, ψh or ψl) = M
(
PrGB(G |p,m,max{W(ψh, ψl; ε, α), 0.5})

)
,

which in turn implies that if 0 < p < 1, 0 ≤ y < x ≤ 1 and x + y > 1, then

SP(p, g, x or y) = sign
(
M

(
PrGB(G |p, g, x + y

2
)
)
− M

(
PrGB(G |p, g,max{W(ψh, ψl; ε, α), 0.5})

))
= sign

(
M

(
PrGB(G |p, g, x + y

2
)
)
− M

(
PrGB(G |p, g,W(x, y; ε, α))

))
= sign

(
M

( x + y

2

)
− M (W(x, y; ε, α))

)
= SP(x or y) (9)

and

SP(p, g, x or y) = sign
(
M

(
PrGB(G |p, b, x + y

2
)
)
− M

(
PrGB(G |p, b,max{W(ψh, ψl; ε, α), 0.5})

))
= −sign

(
M

(
PrGB(G |p, g, x + y

2
)
)
− M

(
PrGB(G |p, g,max{W(ψh, ψl; ε, α), 0.5})

))
= −SP(x or y). (10)

Last, if the agent uses Maximum likelihood updating adapted to the generalized Bayes’ rule,48
then uncertainty attitudes only have a bite on the conditional CEs if the prior is 50%, in which case
the prediction coincides with Full Bayesian updating. So in this scenario, Equations (7) and (8)
restricted to p = 50% are the implications of an agent having the same ε-α-maxmin preference
toward uncertain priors (in problems without updating) and uncertain information.

Note that the validity of Equations (7) to (10) is independent of the agent’s risk preference M and
the parameters in the generalized Bayes’ rule. The two sides of each equation are also constructed
using non-overlapping parts of data. Hence, the correlation between the two sides of each equation
constitutes a test of whether subjects’ attitudes toward uncertainty in priors (without information)
and uncertainty in information accuracy are correlated, given the theories under which the equation
is valid.

There is one equation that is valid under all three theories and can be the basis of a correlation

48The Maximum likelihood updating adapted to the generalized Bayes’ rule has the same selection rule as
Maximum likelihood updating under Bayes’ rule. The difference is that given the selected prior(s)/information
accuracy level(s), beliefs are updated using the adapted Full Bayesian updating.
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test using data from my experiment:

SP(50%, g, 90% or 50%) = SP(90% or 50%). (11)

Now I turn to correlations that involve attitudes toward uncertain priors in problems with
updating. For an ε-α-maxmin agent who uses the adapted Full Bayesian updating or the adapted
Dynamically consistent updating, the CE for an uncertain bet conditional on simple information is

CE(ph or pl,m, ψ) = M
(
PrGB(G |W(ph, pl; ε, α),m, ψ)

)
.

Since M is increasing and the generalized Bayesian posterior is increasing in the prior, if an agent
uses the same ε-α-maxmin model for uncertainty in priors in problems with and without belief
updating, then for any 0.5 ≤ ψ < 1 and 0 ≤ y < x ≤ 1,

SP(x or y,m, ψ) = SP(x or y). (12)

If the agent uses the adapted Maximum likelihood updating, then Equation (12) is valid if ψ = 50%.
Hence, if I require the correlation tests in my experiment to be valid under all three theories, then
they need to be based on the equations

SP(90% or 50%,−, 50%) = SP(90% or 50%) (13)

and
SP(10% or 50%,−, 50%) = SP(10% or 50%) (14)

Now suppose that an agent uses the same ε-α-maxmin model for uncertainty in information
accuracy and uncertainty in priors (in problems with updating). If she uses the adapted Full
Bayesian updating, then for any 0 < p < 1, 0.5 ≤ ψ < 1 and x and y such that 0 ≤ y < x ≤ 1 and
x + y ≥ 1,

SP(x or y,m, ψ) = SP(p, g, x or y), (15)

and
SP(1 − y or 1 − x,m, ψ) = SP(p, b, x or y). (16)

If she uses the adapted Dynamically consistent updating, then for any 0 < p < 1, 0.5 ≤ ψ < 1 and
x and y such that 0 ≤ y < x ≤ 1 and x + y > 1, Equation (15) holds and

SP(x or y,m, ψ) = −SP(p, b, x or y). (17)
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If the agent uses the adapted Maximum likelihood updating, then Equations (15) and (16) hold when
p = ψ = 50%. So the equation that is valid under all three theories and can form a basis for a
correlation test using data in my experiment is

SP(90% or 50%,−, 50%) = SP(50%, g, 90% or 50%). (18)

G.2 Smooth preferences

In the context of smooth preferences, the second-order utility function φ summarizes an agent’s
attitude toward uncertainty about an issue. To incorporate issue preference, I allow φ to be different
for uncertainty in priors (in problems without updating), uncertainty in priors with additional
information, and uncertainty in information accuracy. Denote the three second-order utility functions
by φo, φp and φi, respectively. If φo = φi = φ and the agent uses a recursive smooth preference,
Maximum likelihood updating or Pre-screening, then the valuation of a simple bet with prior 50%
conditional on good news whose accuracy is either 90% or 50% is

φ−1
(
PrBayes(90%|50%, g) · φ

(
PrBayes(G |50%, g, 90%)

)
+ PrBayes(50%|50%, g) · φ

(
PrBayes(G |50%, g, 50%)

))
=φ−1 (0.5 · φ (0.9) + 0.5 · φ (0.5)) ,

which coincides with the evaluation of an uncertain bet whose odds is either 90% or 50%. If the
news on the outcome of the simple bet is bad, then its evaluation would coincide with that of an
uncertain bet whose odds is either 10% or 50%. Put in the terms of certainty equivalents, this implies
that for agents with smooth preferences who use recursive smooth preferences, Maximum likeli-
hood updating or Pre-screening, the two equations, CE(50%, g, 90% or 50%) = CE(90% or 50%)
and CE(50%, b, 90% or 50%) = CE(10% or 50%), hold if the agents have the same attitudes to-
ward uncertainty in priors (in problems without updating) and toward uncertainty in information.
Note that under the assumption that the agents are Bayesian when updating with simple priors and
simple information, the two equations above imply the corresponding equations on the signs of un-
certainty premiums, SP(50%, g, 90% or 50%) = SP(90% or 50%) and SP(50%, b, 90% or 50%) =
SP(10% or 50%).

It is analogous to derive the equations that test φo = φp: SP(90% or 50%,−, 50%) = SP(90% or 50%)
and SP(10% or 50%,−, 50%) = SP(10% or 50%). These two tests are valid if the agents use recur-
sive smooth preferences, Maximum likelihood updating or Pre-screening, and are Bayesian when
updating with simple priors and simple information.

To test φp = φi, consider an agent who uses a recursive smooth preference. For any x + y ≥ 1
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and z ≥ 50%, if φp = φi = φ, then the evaluation of a simple bet with prior z conditional on
uncertain good news whose accuracy is either x or y is

φ−1

(
PrBayes(ψ = x |p = z, g) · φ

(
PrBayes(G |p = z, g, ψ = x)

)
+PrBayes(ψ = y |p = z, g) · φ

(
PrBayes(G |p = z, g, ψ = y)

))
=φ−1

(
PrBayes(p = x |g, ψ = z) · φ

(
PrBayes(G |p = x, g, ψ = z)

)
+PrBayes(p = y |g, ψ = z) · φ

(
PrBayes(G |p = y, g, ψ = z)

)) ,
which coincides with the evaluation of an uncertain bet whose prior is either x or y conditional on
simple good news whose accuracy is z. Hence, CE(z, g, x or y) = CE(x or y, g, z). This in turn
implies that the test SP(z, g, x or y) = SP(x or y, g, z) is valid for agents who use recursive smooth
preferences. Similarly, SP(z, b, x or y) = SP(1−y or 1−x, g, z), SP(1−z, g, x or y) = SP(x or y, b, z)
and SP(1 − z, b, x or y) = SP(1 − y or 1 − x, b, z) are also valid.

For an agent who use Dynamically consistent updating, I consider the sure amount of utils u

that makes her indifferent between the contingent plan (Sure, Sure) and (Bet, Sure). The ex-ante
utility of the former plan is always u, so I focus on the latter. For any x + y > 1 and z ≥ 50%, if
φp = φi = φ, then the ex-ante utility of (Bet, Sure) is

φ−1

( ∑
ψ=x,y

0.5 · φ (zψ + z(1 − ψ)u + (1 − z)ψu)
)

for a simple bet whose prior is z with information whose accuracy is either x or y. This ex-ante
utility can be rewritten as

φ−1

( ∑
p=x,y

0.5 · φ (pz + p(1 − z)u + (1 − p)zu)
)

which is the ex-ante utility of (Bet, Sure) for an uncertain bet whose prior is either x or y with
simple information whose accuracy is z. This implies that the sure amount of utils u that makes her
indifferent between (Sure, Sure) and (Bet, Sure) is the same for the two decision problems. This
in turn implies that the equation SP(z, g, x or y) = SP(x or y, g, z) is valid for an agent who uses
Dynamically consistent updating and for whom φp = φi holds.

G.3 Segal’s two-stage model

The probability weighting function f determines the uncertainty attitudes in Segal’s two-stage
model. To incorporate issue preference into Segal’s model, I allow for different probability weighting
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functions for simple risk, uncertainty in priors in problems without updating, uncertainty in priors
in problems with updating, and uncertainty in information accuracy. For example, the utility of an
uncertain bet is

fo(0.5) fr (ph) + (1 − fo(0.5)) fr (pl),

that of an uncertain bet conditional on simple information is

fp
(
PrBayes(ph |m, ψ)

)
fr

(
PrBayes(G |ph,m, ψ)

)
+
(
1 − fp

(
PrBayes(ph |m, ψ)

))
fr

(
PrBayes(G |pl,m, ψ)

)
,

and those of a simple bet conditional on uncertain information are

fi
(
PrBayes(ψh |p, g)

)
fr

(
PrBayes(G |p, g, ψh)

)
+
(
1 − fi

(
PrBayes(ψh |p, g)

))
fr

(
PrBayes(G |p, g, ψl)

)
and

fi
(
PrBayes(ψl |p, b)

)
fr

(
PrBayes(G |p, b, ψl)

)
+
(
1 − fi

(
PrBayes(ψl |p, b)

))
fr

(
PrBayes(G |p, b, ψh)

)
.

To test whether the three probability weighting functions, fo, fp and fi, are identical, it is straightfor-
ward that the same tests used for recursive smooth preferences apply here. The proofs are omitted.

H Additional results on the correlation between ambiguity
and compound attitudes

Amb=Comp
All

Amb=Comp,Simp
¬(Amb=Comp=Simp)

Simp=Amb
All

Simp=Comp
All

Info accuracy 36% (22%) 22% (18%) 30% 30%
Priors (without updating) 39% (23%) 26% (16%) 29% 30%
Priors (with updating) 35% (21%) 23% (16%) 28% 26%

Table H.1: Relation between compound uncertainty and ambiguity

Notes: The first column of this table shows the percentages of cases where corresponding compound and
ambiguous CEs are identical. Numbers in parentheses are the maximum of these percentages in 500 simula-
tions where compound and ambiguous CEs are randomly permuted among those that share the same simple
counterpart. The second column excludes cases where the corresponding simple, compound, and ambiguous
CEs are all the same. The third column shows the proportions of cases where the ambiguous CE is equal to
the corresponding simple CE, whereas the last column is analogous for the match between compound CEs
and simple CEs.
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I Additional results on stock market reactions to earnings
forecasts

I.1 A model of asset pricing with uncertain information

In this section, I derive the effects of uncertain information accuracy on stock prices in a simple
representative-agent model. The model has three dates, labeled 0, 1, and 2. The representative agent
owns a share of a stock, which is a claim to a dividend d whose true amount is revealed at date 2. At
date 1, a piece of information m about the dividend is realized. At date 0, the representative agent
has a rational expectation about the amount of dividend, which is described by the pdf F(d).

If the agent knows the information structure of m, denoted by ψ(m|d), then her expectation about
the dividend conditional on m adheres to Bayes’ rule:

E(d |m) =
∫
d

d · ψ(m|d)dF(d)∫
d
ψ(m|d)dF(d)

.

I now focus on the case where the agent does not know the information structure. For example,
the information m may be an earnings forecast issued by an analyst who is unfamiliar to the agent.
Suppose that the information structure might either be ψ1(m|d) or ψ2(m|d), and the two possibilities
are equally likely. Then the Bayesian expectation about the dividend conditional on m should be

EBayes(d |m) =
∫
d

d · (0.5ψ1(m|d) + 0.5ψ2(m|d)) dF(d)∫
d
(0.5ψ1(m|d) + 0.5ψ2(m|d)) dF(d)

.

In view of the experimental results in this paper, people may not follow Bayes’ rule when the infor-
mation structure is uncertain. Therefore, adapting the ε-α-maxmin EU preference and Full Bayesian
updating to the current setting, I assume that the representative agent’s conditional expectation about
the dividend is given by

E(d |m) =

∫
d

d ·
(
(1 − ε)[(1 − α)ψ̄(m|d) + αψ(m|d)] + ε · ψ0(m)

)
dF(d)∫

d

(
(1 − ε)[(1 − α)ψ̄(m|d) + αψ(m|d)] + ε · ψ0(m)

)
dF(d)

.

I assume that the pdf ψ0(m) does not depend on the true dividend d, so it represents an uninformative
information structure. Which of the two information structures, ψ1 and ψ2, receives the relative
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weight α depends on which one, when mixed with ψ0, leads to a more pessimistic expectation:

ψ̄ = arg max
ψ∈{ψ1,ψ2 }

E(d |m) =
∫
d

d · ((1 − ε)ψ(m|d) + ε · ψ0(m)) dF(d)∫
d
((1 − ε)ψ(m|d) + ε · ψ0(m)) dF(d)

and

ψ = arg min
ψ∈{ψ1,ψ2 }

E(d |m) =
∫
d

d · ((1 − ε)ψ(m|d) + ε · ψ0(m)) dF(d)∫
d
((1 − ε)ψ(m|d) + ε · ψ0(m)) dF(d)

.

Simple algebra lead to a counterpart of Proposition 1 in the stock market setting.

Proposition 12 Assume that the representative investor has an ε-α-maxmin preference and uses
Full Bayesian updating.

1. If ε = 0 and α = 0.5, then her conditional expectations about the dividend coincide with the
Bayesian expectations conditional on simple information with information structure ψ1+ψ2

2 ;

2. As α increases, the conditional expectations decrease;

3. As ε increases, the conditional expectations become closer to the prior expectation
∫
d

ddF(d).

A straightforward corollary of Proposition 12 is that if α > 0.5 and ε > 0, then the expectation
conditional on good news, i.e. m such that EBayes(d |m) >

∫
d

ddF(d), is lower than the Bayesian
benchmark. This is because both α > 0.5 and ε > 0 cause the agent’s expectation to deviate from
the Bayesian benchmark downwards. For bad news, on the other hand, the comparison with the
Bayesian benchmark is ambiguous.

To study the implications on stock prices, I assume for simplicity that the representative agent is
risk neutral, does not discount the future, and only cares about the dividend at date 2. Then the stock
price at each date is equal to the expectation on that date about the dividend. Also, the abnormal
returns at date 2 are hence R2 = d − E(d |m). In view of the corollary to Proposition 12, if m is good
news, then the abnormal returns are expected to be positive. 49

I.2 Variable definitions and summary statistics

I.3 Robustness checks for results on stockmarket reactions to earnings
forecasts

49Epstein and Schneider (2008) introduce a recursive model where the price at date t is the expectation of
the prices at date t + 1. Making this assumption in my setting would change the stock price at date 0 but not
the other results.
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With record No record
N mean sd N mean sd

Good news
Ret[-1,1] 366,050 0.00795 0.0574 31,554 0.00887 0.0717
Ret[-1,22] 365,998 0.0135 0.133 31,553 0.0153 0.164
Ret[-1,43] 365,675 0.0151 0.183 31,539 0.0202 0.231
Ret[-1,64] 364,133 0.0172 0.227 31,462 0.0227 0.293
Ret[-1,EA+1] 364,993 0.0157 0.212 31,403 0.0206 0.272
Bad news
Ret[-1,1] 562,312 -0.00668 0.0634 46,822 -0.00957 0.0739
Ret[-1,22] 562,235 -0.00770 0.144 46,816 -0.00976 0.164
Ret[-1,43] 561,752 -0.00727 0.194 46,778 -0.00947 0.221
Ret[-1,64] 559,170 -0.00955 0.235 46,653 -0.0128 0.276
Ret[-1,EA+1] 560,105 -0.00994 0.221 46,595 -0.0112 0.272

Table I.1: Returns after forecast revisions

Notes: This table summarizes the size-adjusted returns in different time windows around the forecast an-
nouncement, separately for with-record and no-record forecasts and for good news and bad news. It includes
only forecasts that meet all the data selection criteria. “EA+1" is the 1st trading day after the announcement
of the actual earnings. For the summary statistics of Ret[−1, E A + 1], I exclude observations where the
actual earnings announcement happens later than 190 trading days after the forecast announcement. Variable
definitions are in Table I.2.
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Variable Definition
Main variables
Ret[t,T] The stock’s (buy-hold) returns between the tth and the T th trading

day after the analyst’s forecast announcement minus the equal-
weighted average returns of stocks in the same size decile in the
same period

NoRecord Indicator variable: =0 if the analyst has issued a quarterly earnings
forecast on this stock before and the actual earnings of that quarter
have been announced; =1 otherwise

GoodNews Indicator variable: =0 if the earnings forecast is a downward
revision from the last forecast issued by the same analyst on the
same stock’s quarterly earnings; =1 if it is an upward revision

Controls
ForecastError Absolute forecast error is the absolute difference between a fore-

cast and the actual earnings per share, normalized by the stock
price two trading days prior to the forecast announcement. Fore-
cast error is absolute forecast error normalized by the standard
deviation of absolute forecast errors among all forecasts for the
same stock-quarter

StockE xp/IndE xp/
TotE xp

Experience (stock-specific/industry-specific/total): number of
days since the analyst’s first earnings forecast on the same
stock/any stock in the same industry/any stock

Companies Number of stocks covered by the analyst in the same year
Industries Number of industries covered by the analyst in the same year
Turnover Indicator variable: =0 if the analyst has not changed brokerage

house in the year; =1 otherwise
Horizon Number of days between the earnings forecast and the end of the

forecasted quarter
DaysElapsed Number of days elapsed since the last forecast issued by any analyst

on the same firm’s quarterly earnings or the firm’s last earnings
announcement, whichever is later

BrokerSize Number of analysts in the same brokerage house who cover the
same stock in the same year

Coverage Number of analysts covering the same firm in the same year
log(MktCap) Logarithm of market capitalization at the end of last year
B/M Book-to-Market ratio at the end of last year. Winsorized at the 1st

and 99th percentiles
PastReturns Size-adjusted returns from seven months before forecast an-

nouncement to one month before forecast announcement. Win-
sorized at the 1st and 99th percentiles

Volatility Standard deviation of the stock’s monthly returns in the 24months
before the end of the calendar year prior to the forecast announce-
ment

Volume Average monthly turnover of the stock in the past calendar year

Table I.2: Variable definitions
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With record No record
VARIABLES N mean sd N mean sd

GoodNews 943,984 0.394 0.489 81,839 0.403 0.491
ForecastError 937,015 -0.122 0.933 80,787 -0.101 0.941
StockExp 943,984 1,389 1,418 81,839 83.38 242.0
IndExp 943,984 2,379 2,081 81,839 943.2 1,476
TotExp 943,984 3,024 2,351 81,839 1,561 1,920
Companies 943,984 16.73 8.306 81,839 14.01 9.171
Industries 943,984 4.377 2.693 81,839 3.972 2.705
Turnover 943,984 0.0321 0.176 81,839 0.0377 0.191
Horizon 943,984 42.92 46.56 81,839 40.50 50.30
DaysElapsed 943,984 11.49 15.82 81,839 13.24 16.83
BrokerSize 943,984 1.072 0.275 81,839 1.281 0.509
log(MktCap) 943,801 7.826 1.845 81,815 7.151 1.790
B/M 943,784 0.518 0.397 81,815 0.467 0.377
PastReturns 929,349 0.00338 0.297 81,255 0.0455 0.361
Volume 914,191 2.239 1.850 71,545 2.155 1.901
Coverage 943,984 13.73 8.667 81,839 11.39 8.144

Table I.3: Summary statistics

Notes: This table summarizes the indicator variable GoodNews and the control variables, separately for
with-record and no-record forecasts. It only includes observations that meet all the data selection criteria,
i.e. forecast revisions for quarters between January 1st, 1994 and June 30th, 2019 such that on the fore-
cast announcement day, there is neither earnings announcement from the company nor earnings forecast
announcements by any other analyst on the same company. Variable definitions are in Table I.2.
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With record No record
VARIABLES N mean sd N mean sd

GoodNews 2,412,921 0.393 0.488 168,938 0.398 0.490
ForecastError 2,401,471 -0.161 0.908 167,523 -0.146 0.927
StockExp 2,412,921 1,435 1,447 168,938 75.70 231.7
IndExp 2,412,921 2,470 2,122 168,938 971.5 1,515
TotExp 2,412,921 3,134 2,414 168,938 1,592 1,969
Companies 2,412,921 16.63 7.459 168,938 13.86 8.477
Industries 2,412,921 4.290 2.564 168,938 3.843 2.574
Turnover 2,412,921 0.0262 0.160 168,938 0.0352 0.184
Horizon 2,412,921 49.18 40.83 168,938 46.17 48.98
DaysElapsed 2,412,921 5.349 12.09 168,907 7.603 15.74
BrokerSize 2,412,921 1.070 0.273 168,938 1.287 0.513
log(MktSize) 2,412,502 8.092 1.786 168,890 7.462 1.757
B/M 2,412,450 0.493 0.384 168,889 0.445 0.365
PastReturns 2,375,825 0.00198 0.288 167,802 0.0378 0.353
Volume 2,347,292 2.452 1.912 149,676 2.402 1.996
Coverage 2,412,921 15.92 9.143 168,938 13.61 8.842

Table I.4: Summary statistics (all forecast revisions between 1/1/1994 and 6/30/2019)

Notes: This table summarizes the indicator variable GoodNews and the control variables, separately for
with-record and no-record forecasts. It includes all forecast revisions for quarters between January 1st, 1994
and June 30th, 2019. Variable definitions are in Table I.2.

97



(1) (2) (3)
Ret[2,22] Ret[2,43] Ret[2,EA+1]

Ret[-1, 1] 0.0179 0.146† 0.252**
(0.0568) (0.0775) (0.0808)

NoRecord 0.000717 0.00170 0.00116
(0.00120) (0.00158) (0.00156)

NoRecord × Ret[-1, 1] -0.0335 -0.0214 -0.0520
(0.0227) (0.0319) (0.0364)

GoodNews 0.00689*** 0.00753*** 0.00939***
(0.000929) (0.00137) (0.00149)

GoodNews × Ret[-1, 1] 0.0297 0.0449* 0.0280
(0.0190) (0.0222) (0.0275)

NoRecord × GoodNews -0.000648 0.000990 0.000416
(0.00151) (0.00206) (0.00210)

NoRecord × GoodNews × Ret[-1, 1] 0.0510 0.100* 0.122*
(0.0326) (0.0478) (0.0496)

Controls Y Y Y
Controls × Ret[-1,1] Y Y Y
Year-Quarter FE Y Y Y
Observations 895740 895168 892678
R2 0.009 0.012 0.015

Table I.5: Sufficiency of stock market reactions to forecast revisions: different drift lengths

Notes: This table reports the results of Regression (1) with different dependent variables. Ret[2, 22] and
Ret[2, 43] are the stock’s 1-month and 2-month size-adjusted buy-hold returns starting from the 2nd trading
day after the forecast announcement, respectively. “EA+1" is the 1st trading day after the announcement of the
actual earnings. In the model Ret[2, E A+1], I exclude observations where the actual earnings announcement
happens later than 190 trading days after the forecast announcement. Three-dimensional (stock, analyst,
year-quarter) cluster-robust standard errors in parentheses. †p < 0.10, ∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001
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(1) (2) (3) (4) (5) (6)
Dependent Var: Ret[2,64] High innovation Isolated After 2004 MktCap>2b MktCap>10b Qtr SE&FE
Ret[-1, 1] 0.307* 0.271† 0.369** -0.00618 -0.625†

(0.139) (0.137) (0.131) (0.158) (0.317)
NoRecord 0.00213 -0.00211 -0.00210 0.00498† 0.00358 0.000536

(0.00272) (0.00229) (0.00243) (0.00267) (0.00281) (0.00205)
NoRecord × Ret[-1, 1] -0.0667 -0.0960 -0.105† -0.0449 0.00603 -0.0264

(0.0505) (0.0629) (0.0570) (0.0783) (0.136) (0.0458)
GoodNews 0.0120*** 0.0111*** 0.00737*** 0.00364* 0.00396* 0.0106***

(0.00222) (0.00182) (0.00185) (0.00147) (0.00154) (0.00176)
GoodNews × Ret[-1 1] 0.0440 0.0715* 0.0163 0.0646* 0.0633 0.0522†

(0.0339) (0.0353) (0.0344) (0.0264) (0.0426) (0.0266)
NoRecord × GoodNews 0.000813 0.00146 -0.000372 -0.00459 -0.00515 0.00131

(0.00339) (0.00280) (0.00287) (0.00360) (0.00352) (0.00247)
NoRecord × GoodNews × Ret[-1, 1] 0.229** 0.153† 0.134† 0.163 0.0522 0.107†

(0.0780) (0.0869) (0.0800) (0.135) (0.169) (0.0620)
Controls Y Y Y Y Y Y
Controls × Ret[-1,1] Y Y Y Y Y Y
Year-Quarter FE Y Y Y Y Y Y
Year-Quarter Slope Effects N N N N N Y
Observations 502879 571449 649583 499077 215867 894004
R2 0.018 0.013 0.013 0.020 0.017 0.016

Table I.6: Sufficiency of stock market reactions to forecast revisions: robustness checks

Notes: This table reports the results of Regression 1 under different cuts of the data and specifications. “High innovation" restricts attention to forecasts that
fall outside the range between the same analyst’s previous forecast and the previous consensus. “Isolated" focuses on observations where in the three-day
window centered on the forecast announcement day, there is neither earnings announcement from the company nor forecast announcements by any other
analysts on the same company. “After 2004" uses forecasts announced after Jan 1st, 2004. “MktCap>2b" and "MktCap>10b" focus on stocks whose
market capitalization is larger than $2 billion and $10 billion, respectively. “Qtr SE&FE" includes the interactions between the Year-Quarter dummies
and Ret[−1, 1], in addition to Year-Quarter fixed effects. Three-dimensional (stock, analyst, year-quarter) cluster-robust standard errors in parentheses.
†p < 0.10, ∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001

99



(1) (2)
Ret[-1,1] Ret[2,64]

Revision 1.077*** 2.281*
(0.258) (0.972)

NoRecord -0.00258** 0.000937
(0.000812) (0.00297)

NoRecord × Revision -0.113 -0.566
(0.179) (0.480)

GoodNews 0.0116*** 0.00641**
(0.000581) (0.00196)

GoodNews × Revision 0.438*** 2.586***
(0.118) (0.727)

NoRecord × GoodNews 0.00448*** -0.00163
(0.00110) (0.00397)

NoRecord × GoodNews × Revision -0.0416 2.822*
(0.336) (1.315)

Controls Y Y
Controls × Revision Y Y
Year-Quarter FE Y Y
Observations 503943 502879
R2 0.026 0.022

Table I.7: Sufficiency of stock market reactions to forecast revisions: magnitudes of revi-
sions

Notes: This table reports the results of the following regression.

Ret[t,T]i =η0 + η1Revisioni + η2NoRecordi + η3GoodNewsi
+ η4NoRecordi · GoodNewsi + η5Revisioni · GoodNewsi + η6Revisioni · NoRecordi
+ η7Revisioni · NoRecordi · GoodNewsi + Controlsi + Controlsi · Revisioni + TimeFEi + εi .

(19)

Revision is the difference between an analyst’s revised forecast on earnings per share and her previous forecast,
normalized by the stock price two trading days prior to the announcement of the revision. I winsorize Revision
at the 1st and 99th percentiles. I only include “high innovation" revision, i.e. forecasts that fall outside the range
between the same analyst’s previous forecast and the previous consensus. Three-dimensional (stock, analyst,
year-quarter) cluster-robust standard errors in parentheses. †p < 0.10, ∗p < 0.05, ∗ ∗ p < 0.01, ∗ ∗ ∗p < 0.001
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