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Abstract

Acquiring information about available options before making a decision is useful because it

allows decision makers to switch to a superior alternative if the default option is deemed infe-

rior. Therefore, information demand should depend on the distribution of the options’ values.

In an experiment, I show that information demand increases as the default worsens, while,

on average, it remains insensitive to the prior value of the alternative. These patterns reflect

bounded rationality in information valuation, which stems from the difficulty of foreseeing

future choices and integrating their payoffs.
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1 Introduction

In economics, information is valued primarily for its ability to guide future decisions. For ex-

ample, investors read analyst reports to determine which stocks to buy, while recruiters conduct

interviews to identify the best job candidates. Despite the fact that information value should heav-

ily depend on the decision problem it informs, we know surprisingly little about their empirical

relationship.

This paper studies the demand for information about choice options in an experimental set-

ting, with particular focus on how this demand responds as the prior beliefs about these options

change. This question is important for several reasons. First, it is a near-universal assumption in

information economics that information acquisition correctly responds to incentives. Testing this

assumption informs the realism of theoretical results. Second, information acquisition directly af-

fects decision quality and overall payoffs. Hence, analyzing information demand across different

decision problems helps us identify decisions most likely to be suboptimal. Third, in market envi-

ronments, buyers’ information acquisition affects the purchase probability of each product. As a

result, how information demand responds to the prior beliefs of the products affects sellers’ incen-

tive to invest in them. Lastly, in settings such as recruitment, admission, and lending, information

acquisition based on prior beliefs about applicants carries implications for diversity, equity, and

inclusion.

Demand for information is determined by its valuation, which has a well-defined rational

benchmark. According to standard information economics, information has value only if it steers

choice from the default option to an alternative with some probability. Moreover, the exact value of

information is determined by the probability of choosing an alternative and its value-added when

chosen. Formally, consider an expected utility maximizer who needs to choose from a set of op-

tions. Each option’s utility u depends on the unobserved state of the world ω. The value of an

information structure I (a distribution over a set of signals SI correlated with the states) can be
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calculated by:

V (I) =
∑
s∈SI

E[u(a(s), ω)− u(d, ω)|s] · p(s) (1)

where d is the default option chosen without the information, a(s) is the alternative chosen if signal

s is realized, and p(s) is the probability of s. This expression implies two key comparative statics.

First, for each signal that induces an alternative different from the default, the higher the value-

added of the induced choice, the greater the information value. Second, the higher the probability

of such a signal, the greater the information value.

In this paper, I study the demand for information about choice options in a simple experiment

using these two comparative statics as the rational benchmark. Participants face a choice between

two independent binary lotteries, D and A. Each lottery pays out $3 if it wins and $0 otherwise.

Their winning chances are known and denoted by d and a, respectively. Lottery D is more likely

to win, so it is the default option that participants should choose without additional information.

In the main treatment, D-Info, participants may receive information that fully reveals D’s outcome

before the lottery choice. Participants are incentivized to report how much they think receiving

this additional information would increase their chance of receiving $3. This question essentially

elicits their information valuations. In the experiment, participants answer this question in six

scenarios for different values of d and a. This allows me to study how information valuations vary

with the choice options in a within-subject design.

The information valuation question in this experiment has a straightforward rational answer

that does not depend on risk preferences or belief-updating rules. If the information reveals that

D will win, then participants should choose D, guaranteeing a $3 win. If, instead, the information

indicates D will fail, then participants should choose A, which has an a chance of winning. Es-

sentially, if participants react to information correctly, the information induces a compound lottery

with a total d + (1 − d)a chance of winning. Therefore, the information increases the chance of

receiving $3 by (1 − d)a. This expression is easy to interpret through the lens of equation (1):

the information steers the choice away from the default with a probability of 1− d, and when this

happens, the winning chance increases from 0 to a. It also succinctly illustrates the two rational
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comparative statics: information valuation should decrease in d but increase in a.

In the experiment, participants’ information valuations deviate markedly from the rational an-

swers. Consistent with the rational benchmark, information valuations decrease as D becomes

more likely to win. However, contradicting rationality, the average information valuation does

not vary with A’s winning chance. Moreover, there is substantial heterogeneity in how informa-

tion demand responds to A, with more participants decreasing rather than increasing information

valuations as A’s chance of winning rises.

The differential response of information demand to D and A could arise from the fact that the

evaluated information in the D-Info treatment relates to D’s outcome, not A’s, potentially making

D’s winning chance more salient than A’s. To test this hypothesis, I introduce another treatment

where participants evaluate information that reveals A’s outcome, which has the same theoretical

value as the information in the D-Info treatment. Results of this treatment display the same patterns

as the D-Info treatment—average information valuation decreases as D becomes more likely to win

but does not increase with A’s winning chance. This result implies that making A more salient does

not necessarily help people respond to it correctly when evaluating information.

Having established that people do not rationally account for the distribution of the options’

values when evaluating information, I design additional treatments to investigate the underlying

mechanisms. Conceptually, the difficulty of information valuation may arise in two stages. First,

people may imperfectly foresee their own choices with and without information. Second, given

their choice forecasts, it may be difficult to integrate the choice payoffs to derive the correct infor-

mation value.

To explore whether difficulty at the first stage contributes to deviation from rationality, I run a

treatment where participants report their contingent lottery choices with and without information

before we elicit their information valuations. In this treatment, participants never make mistakes in

their contingent lottery choices, and their information valuations are only slightly more sensitive to

Lottery A’s winning chance. This result indicates that while it helps to have the choice implications

of information on top of mind, much of the difficulty of information valuation lies in the payoff
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integration stage.

Payoff integration often involves complex computation, potentially contributing to its difficulty.

In the main treatments, computational complexity primarily lies in reducing compound probabil-

ities, i.e., calculating (1 − d)a. To test whether computational complexity is key to the biases

in information valuation, I design a variant of the D-Info treatment where the two lotteries are

mutually exclusive. The correct information value in this treatment, equal to a, requires minimal

computation. Nevertheless, information valuation remains largely insensitive to a, suggesting that

computational complexity is not necessary for the bounded rationality. Moreover, although the

correct information value in this treatment does not depend on d, many participants still value in-

formation less as the default becomes more likely to win. This result indicates that although the

negative relationship between information valuations and the default’s winning chances is consis-

tent with rationality in the main treatments, much of it likely reflects the use of heuristics.

Besides computational complexity, the difficulty of payoff integration may also stem from the

fact that these payoffs originate from multiple choices. This is a general property of information

valuation because any valuable information must affect choice with some probability. To test this

hypothesis, I design another treatment where instead of receiving information on a lottery’s out-

come, participants may “insure” Lottery D by using Lottery A as a back-up. Under the insurance,

participants choosing D can still win $3 if D fails, so long as A wins. Having the insurance induces

a compound lottery identical to the one resulting from receiving information about D’s outcome,

thus their values should be the same. But unlike information, having the insurance does not change

the optimal decision — whether insured or not, participants should choose D. Therefore, the val-

uation of insurance does not require integrating payoffs from multiple choices. In this treatment,

participants’ insurance valuations increase significantly as A becomes more likely to win. This

sharply contrasts with the insensitivity of information valuation when A’s winning chance changes.

In a separate treatment, I rule out framing as an explanation for the difference between information

and insurance valuations. Therefore, this result supports the hypothesis that integrating payoffs

from multiple choices indeed contributes to the difficulty of information valuation.
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This paper contributes to the literature on the demand for information with instrumental value.

Several studies investigate how people choose or evaluate noisy information structures (Ambuehl

and Li, 2018; Ambuehl, 2021; Charness, Oprea, and Yuksel, 2021; Guan, Oprea, and Yuksel,

2023). In contrast, this paper restricts attention to fully-revealing information which is easier to

understand, and focuses on how information demand depends on the future decision problem.

Also related is the sequential search literature. For instance, Caplin, Dean, and Martin (2011)

find that people stop searching once the status quo is good enough, thus supporting the satisficing

heuristic (Simon, 1955). While their finding is consistent with rationality, my design explicitly

specifies the distribution of the options’ values, allowing me to detect departures from rationality.

Similarly, rational inattention experiments, like Dewan and Neligh (2020), study perceptual tasks

with varying stakes, mainly to measure attention costs assuming that participants understand the

value of attention. In a field experiment, Bartoš et al. (2016) studies how recruiters and landlords

allocate attention across applicants of different ethnicities. My experiment operates in a more con-

trolled and abstract environment, but the results may have implications for field settings like theirs.

Moreover, a large literature studies the non-instrumental value of information (e.g., Nielsen, 2020;

Masatlioglu, Orhun, and Raymond, 2021; Falk and Zimmermann, 2022; Golman, Loewenstein,

Molnar, and Saccardo, 2022). These papers show that people sometimes have preferences over

the quantity and timing of information, even when these factors do not affect decisions. My study

controls for these non-instrumental factors so that they do not confound the interpretation of the

results.

The results on mechanisms in this paper relate to three behavioral economics literatures: im-

perfect foresight, evaluation of compound lotteries, and contingent reasoning failures. First, in-

formation valuation requires people to foresee what they will choose after the information real-

izes. Consistent with evidence of imperfect foresight (Binmore et al., 2002; Johnson et al., 2002;

Chakraborty and Kendall, 2022a,b), this paper shows that information valuations improve when

people think through their future choices first. Second, information valuation often involves reduc-

ing compound probabilities, a task found to be challenging for many (Halevy, 2007; Chew, Miao,
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and Zhong, 2017). While non-reduction of compound lottery may play a role in this paper’s results,

I show that participants do not correctly evaluate information even when no compound probabil-

ities are involved. Third, to evaluate information, people need to integrate payoffs from different

choices. Prior research has shown that people often make mistakes in decisions that require contin-

gent thinking (Esponda and Vespa, 2014, 2021; Martínez-Marquina, Niederle, and Vespa, 2019).

This paper offers a fresh insight into this literature: integrating payoffs from multiple choices is

more challenging than integrating multiple payoffs from a single choice.

2 Evidence on information demand

2.1 Experimental design

In this section, I detail the design of the main experimental treatment. The designs of additional

treatments will be discussed in subsequent sections alongside their results. The experimental in-

terface can be found on the author’s website.

Participants are presented with six scenarios in random order. In each scenario, they are asked

to consider a choice between two independent binary lotteries (D and A) whose winning chances

(d and a) are known. The outcomes of the lotteries will be revealed after their choice. The chosen

lottery yields a $3 prize if it wins and $0 otherwise. Lottery D is more likely to win, so it is the

default option that participants should choose without additional information. Lottery A is the

alternative option that is inferior to D ex-ante. The six scenarios differ only in the values of d and

a, which are detailed in Table 1.

Table 1: Lotteries in the six scenarios

Scenario 1 2 3 4 5 6

d 60% 60% 60% 50% 70% 90%

a 10% 30% 50% 40% 40% 40%

In each scenario, I elicit participants’ subjective information valuations by asking how much
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they think their chances of choosing a winning lottery would increase if D’s outcome is revealed

before the lottery choice. The information valuation question is implemented as a multiple-choice

question where participants select a statement of the following form with a specific number x that

best describes their preferences:

I would choose the information over an increase in both lotteries’ winning chances

by (x − 1)%, but I would choose an increase in both lotteries’ winning chances by

(x+ 1)% over the information.1

The x in the statement a participant selects is interpreted as her information valuation.2

Calibrating information valuation by an increase in the lotteries’ winning chances offers several

benefits. First, because the final payoffs are always binary, risk preference is irrelevant. Second,

because participants essentially compare two increments in probability from the same status quo

(d), reference dependence and probability weighting play no role. Additionally, increasing both

d and a instead of only d doesn’t alter the relative salience of the two lotteries, and it improves

the participants’ subjective chances of winning by this amount, even if they are unsure about their

lottery choices.

After answering this question for all six scenarios, a random scenario is implemented for real,

and a random number y is generated. If the participant’s information valuation in the real scenario

is greater than y%, then D’s outcome is revealed to her; otherwise, both lotteries’ winning chances

increase by y%. This Becker, DeGroot, and Marschak (1964)-style incentive scheme ensures

truthful reporting of information valuations.3

Subsequently, participants choose between the two lotteries. After the lottery choice but prior

to revealing the outcomes, participants are asked to offer advice to future participants on how

1From the top of the choice list to the bottom, the number x increases from 0 to 30 in steps of 2, except for the
scenario with d = 90% where the maximal x is 10. The first (second) part of the statement at the top (bottom) is
omitted. Appendix A.1 addresses the difference in range across scenarios.

2This elicitation format is similar to the sMPL in Andersen et al. (2006), which directly asks participants to state a
switching point in a multiple price list.

3Following Danz, Vesterlund, and Wilson (2022), the instructions simply state that it is in the participants’ best
interest to answer the questions based on their true preferences. The details of the incentive scheme are described in
the instructions, but participants are not required to read them.
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to answer the information valuation questions. The advice is incentivized — if an advisee wins

a $3 bonus, the advisor receives an additional $2 bonus.4 In an endline questionnaire, I collect

sociodemographic information and ask unincentivized questions about participants’ tendencies to

gather information, plan, and take risks in their daily life. These variables are summarized in Table

A1.

The experiment was pre-registered and conducted on Prolific with a $2 participation fee. Par-

ticipants receive extensive instructions on the details of the tasks. In addition, they need to correctly

answer several comprehension questions before proceeding with the experiment. A total of 1050

participants were recruited across all treatments, with the experiment’s median duration being 10

minutes.

2.2 Rational benchmark

The information valuation question in the experiment has a rational answer. Without knowing

D’s outcome in advance, participants should choose D, which has a winning chance of d. If D’s

outcome is revealed before the lottery choice, participants should choose D if it wins and A if it

doesn’t. This strategy induces a compound lottery as illustrated in Figure 1, resulting in a total

winning chance of d + (1 − d)a. Therefore, learning D’s outcome should increase the winning

probability by (1− d)a. This expression is unaffected by risk preferences and any deviations from

Bayes’ rule. It also has a straightforward interpretation: information about D’s outcome diverts the

choice from the default option with a 1−d probability, and when this happens, the winning chance

increases from 0 to a. The rational information value decreases with d and increases with a. The

variation in these two parameters across the six scenarios allows me to test these two comparative

statics.

The expression (1 − d)a solely considers the instrumental value of information, but prior re-

search has indicated that people may have preferences over the amount and timing of uncertainty

resolution for non-instrumental reasons. In my experiment, though, the amount and timing of un-

4Behaviors of the advisees are analyzed in Appendix A.4.
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Figure 1: Payoff structure induced by the information in the D-Info treatment

Notes: This figure depicts the payoff structure induced by the information in the D-Info treatment. The straight
branches represent uncertainty resolution. The letter on a straight branch represents its probability. The elbow branches
are choice options. The optimal choices, shown in orange, induce a compound lottery.

certainty resolution are carefully controlled, thus, non-instrumental factors should have minimal

impact on information valuations. First, the outcomes of both lotteries will eventually be revealed

irrespective of the participants’ information valuations. As a result, these valuations should not

be influenced by curiosity about the lotteries’ outcomes. Second, although reporting a high infor-

mation valuation makes it more likely that D’s outcome will be revealed before A’s, the time gap

between the two revelations is short. In such scenarios, intrinsic preferences for information tim-

ing are often weak (Nielsen, 2020). To address this issue further, I will discuss a treatment where

information valuations do not affect information timing at all in Section 3.1.

2.3 Results

Figure 2 presents the average information valuation for each of the six scenarios in the D-

Info treatment (N = 147). Consistent with the rational benchmark, as the winning chance of

the default lottery d increases, information valuations decrease. In contrast, average information

valuation stays constant and then drops as the alternative lottery A becomes more likely to win.
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Figure 2: Information valuations in the D-Info treatment

Notes: This figure shows the average information valuations in the D-Info treatment. Each dot represents a scenario,
with the tag next to it showing the d and a of that scenario. Error bars represent 95% confidence intervals.

These patterns are further corroborated by a regression analysis (see Table A2). In Regression

(1), I regress information valuations on d, using observations from the three scenarios where a

is fixed at 40% and d is 50%, 70%, and 90%. The coefficient is significantly negative (p <

0.001), albeit the magnitude is smaller (p < 0.001) than the rational benchmark 1 − 60% =

0.4. In Regression (2), I regress information valuations on a, using observations from the three

scenarios where d is fixed at 60% and a is 10%, 30%, and 50%. Contradicting rationality, the

coefficient is slightly negative. These patterns persist in a selected sample of participants who

correctly answer all comprehension questions in one attempt, choose the optimal lottery given all

available information, and spend on average 8 seconds or more on each scenario (see Regressions

(3) and (4)). The qualitative results also hold when I control for the scenario order and all variables

in the endline questionnaire, as well as their interactions with the main independent variable d or

a (see Regression (5) and (6)).5

5Only one control variable is significantly correlated with the level of information valuations: a one-standard-
deviation increase in self-reported tendency to acquire information, which is 1 on a five-point likert scale, is associated
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Aggregate results mask interesting patterns at the individual level. Table A3 classifies partic-

ipants by the monotonicity of their information valuations in relation to changes in d and a. As

d increases from 50% to 70% to 90%, 66% of participants report monotonically decreasing infor-

mation valuations (which is rational), while almost none report monotonic increases or constant

values.6 In contrast, as a increases from 10% to 30% to 50%, 27.9% of participants report mono-

tonically decreasing information valuations (which is irrational), but the other two categories are

also substantial, each representing around 20% of participants. These patterns imply that while

most participants respond to changes in d in the correct direction, there is substantial heterogeneity

in how they respond to variations in the winning chances of the alternative lottery A.

Analyzing the advice participants provide to future participants on how to answer the infor-

mation valuation questions can provide insight into their thought processes. For each advice, a

research assistant notes whether it mentions d or a as a consideration for information valuations

and, if so, how. As is summarized in Table A4, 25.9% of participants mention the correct com-

parative statics of information valuations on d, whereas 12.2% mention comparative statics in the

wrong direction. Fewer participants mention comparative statics on a: 10.9% state the correct

direction, and 12.9% are wrong. These results are in line with the individual-level patterns of

information valuations.

Apart from comparative statics, some participants reveal the exact decision rules they try to

implement in their advice. For instance, 12 participants (8.1%) state that they would choose the

information unless they can increase the winning chance of D above a certain threshold. This

decision rule, just like the rational rule, can generate the prevalent negative relationship between

information valuations and d that we observe in the experiment. It also echoes Simon (1955)’s

satisficing heuristic, which posits that decision-makers search for new options until the status quo

surpasses a fixed aspiration level. Interestingly, 4 participants (2.7%) express that they prefer the

with 2.38 percentage points increase in information valuations in the three scenarios where d is 60% (p = 0.032).
Several control variables have marginally significant associations with the sensitivity of information valuations to d
and a. Female and college-graduated participants decrease their information valuations more as d increase. Older and
more risk-seeking participants have information valuations that increase more with a.

6Valuations are classified as decreasing (increasing) if they are weakly decreasing (increasing) but not constant
everywhere.
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information unless the winning chance of A is increased to a certain level. This incorrectly-applied

satisficing heuristic could explain why information valuations sometimes respond to a in the wrong

direction.

2.4 A-Info treatment

In the D-Info treatment, Lottery D is the focus of the information. This may highlight D

over A, potentially explaining why information valuations are more sensitive to d. To test this

potential explanation, I conduct another treatment termed A-Info (N = 152) where participants

evaluate information that reveals A’s outcome before the lottery choice. If participants receive

this information about A, they should choose A if it wins and D if not. This strategy induces the

compound lottery depicted in Figure 3 and gives participants a a+(1−a)d probability of winning.

Therefore, the value of learning A’s outcome should be a(1 − d). Although this expression is

the same as the value of learning D’s outcome, the interpretations of a and 1 − d are reversed:

information about A diverts decision from the default option with a probability of a, and when it

happens, the winning chance increases from d to 1.

The information valuations in the A-Info treatment are remarkably similar to the D-Info treat-

ment, both on average (Figure 4) and in terms of the distribution of individual behaviors (Table

A3). Participants respond in the correct direction to changes in d, but are mixed and on average

insensitive to changes in a. (Tables A5 and A6 show in regressions that the A-Info treatment is not

significantly different from the D-Info treatment with respect to the sensitivity of information valu-

ations.) Turning to incentivized advice, more participants in the A-Info treatment mention Lottery

A compared to the D-Info treatment, suggesting that Lottery A is indeed more salient when it is

the subject matter of information. Nevertheless, participants who mention comparative statics with

respect to a are still more likely to be wrong (19.7%) than right (18.4%).

The fact that information valuations are almost identical whichever lottery is revealed implies

that merely increasing the salience of the alternative lottery does not guarantee that information

valuations will respond to it correctly. Moreover, because the two kinds of information induce
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Figure 3: Payoff structure induced by the information in the A-Info treatment

Notes: This figure depicts the payoff structure induced by the information in the A-Info treatment. The straight
branches represent uncertainty resolution. The letter on a straight branch represents its probability. The elbow branches
are choice options. The optimal choices, shown in orange, induce a compound lottery.
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Figure 4: Information valuations in the A-Info treatment

Notes: This figure shows the average information valuations in the A-Info treatment. Each dot represents a scenario,
with the tag next to it showing the d and a of that scenario. Error bars represent 95% confidence intervals.
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different choice probabilities and different winning chances conditional on each choice, variations

in these features cannot explain the results.

A potential confound of these results is that the maximum permissible answer for information

valuation when d = 90% and a = 50% is 10% (as information cannot increase the winning chance

beyond 100%), which is different from the other scenarios where the answer is allowed to be as

high as 30%. This difference in range could affect the measured sensitivity of information valua-

tions when d increases from 70% to 90%, but it cannot explain the sensitivity as d increases from

50% to 70% as the range remains constant. To further address this potential confound, I conduct

a variation of the D-Info treatment where information valuations are elicited as willingness-to-

pay, and the answer range is constant across all scenarios (see Appendix A.1). In this treatment

(N = 70), information valuations are still more sensitive to d than to a, especially as d increases

from 70% to 90%. This provides assurance that the main results of the experiment are not an

artifact of the elicitation mechanism.

3 What makes information valuation difficult?

The results so far have established that people do not rationally account for the choice options

when evaluating information. Conceptually, the difficulty of evaluating information could come in

two stages. First, people might not perfectly foresee what they will choose when the information

realizes or is absent. Second, given their choice forecasts, it could be difficult to integrate the

choice payoffs to derive the correct information value.

3.1 Imperfect foresight

To examine whether imperfect foresight of one’s future choices plays a role in the deviations

from rationality, I implement a strategy-method version of the D-Info treatment (N = 73). Par-

ticipants in this treatment first report their contingent lottery choices for each possible realization

of information and in its absence. Then, they report their information valuations. Once it is de-
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termined whether they receive information, their contingent lottery choice is implemented and

the outcomes are revealed. Having participants make contingent lottery choices first ensures their

knowledge of their choices when evaluating information. Moreover, because all uncertainties are

resolved in one shot with or without information, preferences for the timing of uncertainty resolu-

tion are irrelevant to information valuation.

In the strategy-method treatment, all participants make optimal contingent lottery choices, sug-

gesting that this is not a difficult task. Figure 5 presents the comparative statics of information val-

uations. The average information valuation shows a slight, but insignificant increase (p = 0.136)

as Lottery A becomes more likely to win. However, this is a significant change from the D-Info

treatment (p = 0.029) where the average information valuation decreases in a. The improved

sensitivity to a is also evident at the individual level with 30.1% of participants increasing their

information valuations with a, higher than the 20.4% in the D-Info treatment (p = 0.055).7 These

findings suggest that the biases in information valuations can partially be attributed to participants’

imperfect foresight of their future choices. Moreover, the fact that participants have no trouble

formulating a choice plan when prompted suggests that the imperfect foresight is not due to the in-

herent difficulty of choice forecasting, but rather to the failure to consider the future lottery choices

when evaluating information.8

3.2 Payoff integration

To evaluate information, people need to integrate multiple potential payoffs, which can be

difficult for at least two reasons. First, payoff integration can be computationally complex. Second,

the payoffs to be integrated come from multiple choices, which could add to the complexity.

7However, fewer pieces of advice mention that information valuations should rise with a.
8It is worth noting that existing models of imperfect foresight cannot readily generate the patterns in the experiment.

For example, a tremble model where the decision-maker anticipates a probability of mistakes for each information set
can generate insensitivity to d and a, but not asymmetry between them.
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Figure 5: Information valuations in the Strategy-method treatment

Notes: This figure shows the average information valuations in the Strategy-method treatment. Each dot represents a
scenario, with the tag next to it showing the d and a of that scenario. Error bars represent 95% confidence intervals.

3.2.1 Computational complexity

In the treatments discussed so far, the computational complexity of information valuation

mainly comes from the reduction of compound probabilities. To investigate whether computa-

tional complexity is key to the biases in information valuation, I design a variant of the D-Info

treatment, named Mutually Exclusive (N = 74), that eliminate the need for reducing compound

probabilities. This is achieved by making D and A mutually exclusive—the two lotteries cannot

both win. Same as in the D-Info treatment, participants in the Mutually Exclusive treatment should

choose D if the information says it wins and choose A otherwise. This strategy leads to a lottery

depicted in Figure 6. The total winning chance by following this strategy is d + a, which implies

that the information value should be a. Note that this expression does not involve any reduction of

compound probabilities, thereby significantly reducing computational complexity. It also doesn’t

involve d, which allows me to test whether information valuation responds to the default lottery

when it shouldn’t. I elicit information valuations in 5 scenarios, varying d and a: the values of
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Figure 6: Payoff structure induced by the information in the Mutually Exclusive treatment

Notes: This figure depicts the payoff structure induced by the information in the Mutually Exclusive treatment. The
straight branches represent uncertainty resolution, with the two nodes in the dashed rectangle being in the same in-
formation set. The letter on a straight branch represents its probability. The elbow branches are choice options. The
optimal choices, shown in orange, induce a lottery.

(d, a) are (40%, 10%), (40%, 20%), (40%, 30%), (30%, 20%) and (50%, 20%). The highest

allowed answer for information valuation is 40% for all 5 scenarios.

Figure 7 shows the result of the Mutually Exclusive treatment. Average information valuation

increases slightly with a, but the slope is statistically indistinguishable from zero (p = 0.478).

At the individual level, as a goes up, 27% of participants increase their information valuations,

which is not significantly more than the 21.6% who decrease their valuations (Pearson’s χ2 test,

p = 0.505). These results demonstrate that information valuations do not correctly respond to the

alternative option even when the computational requirements are minimal.

Interestingly, even though the correct information value does not depend on the default lottery,

many participants’ information valuations do. As d increases, 40.5% of participants decrease their

information valuations, which is significantly more than the 21.6% of participants who increase

their valuations (Pearson’s χ2 test, p = 0.039) and the 13.5% who (correctly) keep theirs constant.

The average information valuation is also more sensitive to d than to a, although the difference is
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Figure 7: Information valuations in the Mutually Exclusive treatment

Notes: This figure shows the average information valuations in the Mutually Exclusive treatment. Each dot represents
a scenario, with the tag next to it showing the d of that scenario. Error bars represent 95% confidence intervals.

not statistically significant (p = 0.764). These findings imply that many people devalue informa-

tion as the default lottery becomes more likely to win, even when such a response isn’t justified

by the context. This context-insensitive decision-making suggests that the seemingly rational re-

sponse of information valuation to the default lottery in the main treatments is likely driven by

heuristic use.

3.2.2 Multiple choices

To evaluate information, people need to integrate payoffs from multiple potential choices. This

is true in my experiment because participants need to integrate the payoffs of choosing D and

choosing A. It is also a general feature of information valuation because information adds value

only if it changes people’s choice with a positive probability. Prior research on contingent rea-

soning (Esponda and Vespa, 2014, 2021; Martínez-Marquina, Niederle, and Vespa, 2019) suggests

that integrating multiple potential payoffs can be challenging. This section examines whether this
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Figure 8: Payoff structure induced by the insurance in the D-Insured treatment

Notes: This figure depicts the payoff structure induced by the insurance in the D-Insured treatment. The straight
branches represent uncertainty resolution. The letter on a straight branch represents its probability. The elbow branches
are choice options. The orange branch is the optimal choice, which induces a compound lottery.

integration process becomes more difficult when the payoffs arise from multiple choices.

To test this hypothesis, I design a treatment where participants evaluate an object that induces

the same compound lottery as information but does not involve multiple choices in its valuation.

This object is an insurance. Specifically, in the D-Insured treatment (N = 142), participants

do not learn about a lottery’s outcome in advance, nor are they asked to evaluate any information.

Instead, they may “insure” Lottery D using Lottery A as a back-up. With the insurance, participants

can win $3 even if they choose D and it fails, so long as A wins. This insurance leads to the

compound lottery depicted in Figure 8, which is the same as learning about D’s outcome in the

D-Info treatment. Thus, the insurance value is the same as the information value, (1− d)a. Unlike

the D-Info treatment, however, participants in the D-Insured treatment should always choose D

whether they have the insurance or not, so insurance valuation only requires integrating different

payoffs from this single choice. Thus, comparing information valuation in the D-Info treatment to

insurance valuation in the D-Insured treatment allows me to test whether integrating payoffs from

multiple choices is more difficult than integrating multiple payoffs from a single choice.

Figure 9 shows how average insurance valuation changes with d and a. Consistent with ra-

tionality, average insurance valuation increases with a (p < 0.001). This is in stark contrast with
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Figure 9: Insurance valuations in the D-Insured treatment

Notes: This figure shows the average insurance valuations in the D-Insured treatment. Each dot represents a scenario,
with the tag next to it showing the d and a of that scenario. Error bars represent 95% confidence intervals.

the average information valuation in the D-Info treatment which is insensitive to a. The sensitiv-

ity to a in the D-Insured treatment is also reflected on an individual level: 40.9% of participants

have insurance valuations that are monotonically increasing in a, compared to 19% decreasing and

9.2% remaining constant. Moreover, 67.6% of participants refer to Lottery A in their incentivized

advice, none of whom mention the wrong comparative statics.

The different results from the D-Info and D-Insured treatments are consistent with the hypoth-

esis that integrating payoffs from multiple choices is more challenging than integrating multiple

payoffs from a single choice. However, the difference could also result from other framing effects.

For example, people may simply be better at evaluating insurance than information. To rule out

framing as the explanation, I conduct a treatment, named A-Insured (N = 156), which parallels

the D-Insured treatment but for the A-Info treatment. Specifically, participants in the A-Insured

treatment may “insure” Lottery A by using D as its back-up. With the insurance, participants can

win $3 even if they choose A and it fails, so long as D wins. This insurance induces the same
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Figure 10: Payoff structure induced by the insurance in the A-Insured treatment

Notes: This figure depicts the payoff structure induced by the insurance in the A-Insured treatment. The straight
branches represent uncertainty resolution. The letter on a straight branch represents its probability. The elbow branches
are choice options. The orange branch is the optimal choice, which induces a compound lottery.

compound lottery as the information in the A-Info treatment (see Figure 10), so their values are

identical. However, the insurance changes the optimal decision: participants should choose A if

it is insured and D if it’s not. As a result, they still need to integrate payoffs from more than one

choice to evaluate the insurance, which distinguishes it from the D-Insured treatment. If integrating

payoffs from multiple choices is what makes information valuation challenging, then we should

not expect participants to perform better in the A-Insured treatment than in the A-Info treatment.

If, on the other hand, the insurance framing is what helps participants in the D-Insured treatment,

it should also help those in the A-Insured treatment.

Figure 11 shows the insurance valuation in the A-Insured treatment. The average valuation

is decreasing in a (p = 0.026), showing no improvement from information valuations in the A-

Info treatment. There are even signs of more deviations from rationality when we examine the

individual-level results. The percentage of participants whose answers monotonically respond to

a in the wrong direction increases from 27% in the A-Info treatment to 34.6% in the A-Insured

treatment (p = 0.074). The proportion of participants with the correct monotonicity to d decreases
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Figure 11: Insurance valuations in the A-Insured treatment

Notes: This figure shows the average insurance valuations in the A-Insured treatment. Each dot represents a scenario,
with the tag next to it showing the d and a of that scenario. Error bars represent 95% confidence intervals.

from 75.7% to 58.3% (p < 0.001). Among participants who mention comparative statics on d

or a in their incentivized advice, many more get the directions wrong than right. Taken together,

participants perform worse at evaluating insurance in the A-Insured treatment than evaluating in-

formation in the A-Info treatment. This result indicates that the insurance framing per se does

not make evaluation easier, thus ruling out a potential confound when comparing the D-Insured

and D-Info treatments. It also supports our preferred hypothesis: having to integrate payoffs from

multiple choices makes information valuation difficult.

Another implication of this hypothesis is that information that does not affect decisions should

be easier to evaluate. So long as people recognize that the realization of information won’t af-

fect their decision, they should understand that such information holds no value. Arriving at this

conclusion does not require any payoff integration or computation. To test this implication, I in-

corporate a scenario into the start of the original D-Info and A-Info treatments, where Lottery A

has no chance of winning, hence rendering the information valueless. These adjusted treatments

23



are termed D-Info (a = 0 first) and A-Info (a = 0 first). Consistent with the hypothesis, the aver-

age information valuation in this scenario is significantly lower than the scenario where a = 10%.

Details of these two treatments are relegated to Appendix A.3.

4 Discussion

This paper, through an experimental approach, explores how information demand responds to

the decision problem it informs. On the one hand, information demand increases as the default

option presents a higher downside risk in the decision problem. On the other hand, responses to

changes in the alternative option display significant heterogeneity, and on average, are insensitive.

Both patterns exhibit characteristics of bounded rationality.

Bounded rationality in information demand directly affects decision quality and overall in-

dividual welfare. Moreover, it may have important implications in market settings. Consider a

simple example where Lottery D and Lottery A in the main experiment represent two competing

products in the market. In this case, the market share of A increases with the proportion of con-

sumers who acquire information about the products before purchase.9 If information acquisition

is insensitive to A’s prior a, then the marginal benefit of investing in a could be diminished. Of

course, to validate such implications, further research on specific field settings is required.

In this paper, I demonstrate that the complexity of information valuation is related to the diffi-

culty of foreseeing future choices and integrating their payoffs. In additional to information valu-

ation, these mechanisms may also affect other behaviors. For example, self-motivational devices

such as gym memberships and commitment contracts derive their value from behavior change.

Therefore, to evaluate these devices, people have to integrate payoffs from multiple behaviors.

The difficulty of foreseeing future choices and integrating their payoffs could lead to biases in

these valuations too.
9To understand why, suppose consumers can only acquire information about D. Then, A’s market share is

Pr(Acquire information) · (1 − d). If Consumers can only acquire information about A, then A’s market share is
Pr(Acquire information) · a.
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V. Bartoš, M. Bauer, J. Chytilová, and F. Matějka. Attention discrimination: Theory and field ex-

periments with monitoring information acquisition. American Economic Review, 106(6):1437–

1475, 2016.

G. M. Becker, M. H. DeGroot, and J. Marschak. Measuring utility by a single-response sequential

method. Behavioral science, 9(3):226–232, 1964.

K. Binmore, J. McCarthy, G. Ponti, L. Samuelson, and A. Shaked. A backward induction experi-

ment. Journal of Economic theory, 104(1):48–88, 2002.

A. Caplin, M. Dean, and D. Martin. Search and satisficing. American Economic Review, 101(7):

2899–2922, 2011.

A. Chakraborty and C. W. Kendall. Future self-proof elicitation mechanisms. Available at SSRN

4032946, 2022a.

A. Chakraborty and C. W. Kendall. Noisy foresight. Technical report, National Bureau of Eco-

nomic Research, 2022b.

G. Charness, R. Oprea, and S. Yuksel. How do people choose between biased information sources?

evidence from a laboratory experiment. Journal of the European Economic Association, 19(3):

1656–1691, 2021.

S. H. Chew, B. Miao, and S. Zhong. Partial ambiguity. Econometrica, 85(4):1239–1260, 2017.

25



D. Danz, L. Vesterlund, and A. J. Wilson. Belief elicitation and behavioral incentive compatibility.

American Economic Review, 112(9):2851–83, 2022.

A. Dewan and N. Neligh. Estimating information cost functions in models of rational inattention.

Journal of Economic Theory, 187:105011, 2020.

I. Esponda and E. Vespa. Hypothetical thinking and information extraction in the laboratory.

American Economic Journal: Microeconomics, 6(4):180–202, 2014.

I. Esponda and E. Vespa. Contingent thinking and the sure-thing principle: Revisiting classic

anomalies in the laboratory. 2021.

A. Falk and F. Zimmermann. Attention and dread: Experimental evidence on preferences for

information. 2022.

R. Golman, G. Loewenstein, A. Molnar, and S. Saccardo. The demand for, and avoidance of,

information. Management Science, 68(9):6454–6476, 2022.

M. Guan, R. Oprea, and S. Yuksel. Complexity and preferences for information. 2023.

Y. Halevy. Ellsberg revisited: An experimental study. Econometrica, 75(2):503–536, 2007.

E. J. Johnson, C. Camerer, S. Sen, and T. Rymon. Detecting failures of backward induction:

Monitoring information search in sequential bargaining. Journal of economic theory, 104(1):

16–47, 2002.

A. Martínez-Marquina, M. Niederle, and E. Vespa. Failures in contingent reasoning: The role of

uncertainty. American Economic Review, 109(10):3437–3474, 2019.

Y. Masatlioglu, A. Y. Orhun, and C. Raymond. Intrinsic information preferences and skewness.

2021.

K. Nielsen. Preferences for the resolution of uncertainty and the timing of information. Journal of

Economic Theory, 189:105090, 2020.

26



H. A. Simon. A behavioral model of rational choice. The quarterly journal of economics, pages

99–118, 1955.

27



Appendix

A Additional treatments

A.1 WTP treatment

In the D-Info treatment, the highest allowable answer for information valuation is capped at

10% when d = 90% and a = 50%. This is different from the other scenarios where the answer can

reach up to 30%. To address this potential confound, I run the Willingness-To-Pay (WTP) treat-

ment where the range of answers for the information valuation question remains constant across all

scenarios. In this treatment, with 50% chance, participants’ final payments are determined by the

outcome of their chosen lottery between D and A, mirroring the original D-Info treatment. Other-

wise, their payments are determined by the outcome of a different, independent binary lottery X.

The percentage winning chance of X is equal to the number of points a participant holds. In each

scenario, participants start with an endowment of 60 points and answer how many points they are

willing to pay to receive information about D’s outcome. The question is implemented through a

multiple-price list and the maximal price is 30 points across all scenarios. Because the payment is

equally likely to be determined by X or the chosen lottery between D and A, the WTP in points

reflects the information valuation.

The WTP treatment has the advantage of maintaining a consistent range of answers across

scenarios but presents two potential drawbacks. First, the introduction of a third lottery X could

increase the complexity of the treatment. Second, as information valuations are elicited through

WTP, they could be affected by loss attitudes.

Figure A1 shows the results of the WTP treatment. Consistent with loss aversion, the WTP

for information is significantly lower than the valuations elicited in the D-Info treatment. This

compression toward zero inevitably limits the variability of information valuations. Nevertheless,

WTP still exhibits significant sensitivity to d (p = 0.001), especially when it decreases from 90% to

70%, which is precisely the region where the range of answers is not fixed in the D-Info treatment.
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Figure A1: Information valuations in the WTP treatment

Notes: This figure shows the average information valuations in the WTP treatment. Each dot represents a scenario,
with the tag next to it showing the d and a of that scenario. Error bars represent 95% confidence intervals.

This result indicates that the sensitivity of information valuations to d is not an artifact of the

elicitation mechanism. Interestingly, average information valuation in the WTP treatment is also

sensitive to a in the correct direction, though still less so than to d.

A.2 Inconclusive Info treatment

In this section, I report on the Inconclusive Info treatment (N = 86). Similar to the Mu-

tually Exclusive treatment, results of this treatment show that information valuations respond to

the default lottery even when they shouldn’t. This treatment also demonstrates that the bounded

rationality in information valuation persists even when the calculation doesn’t involve reducing

compound probabilities.

In the Inconclusive Info treatment (N = 86), bad news about Lottery D’s outcome is conclu-

sive but good news is not—the information reports “Lottery D wins” with probability d′ > d. To

keep the number of parameters constant, I simplify the setting by making D and A perfect comple-
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Figure A2: Payoff structure induced by the information in the Inconclusive Info treatment

Notes: This figure depicts the payoff structure induced by the information in the Inconclusive Info treatment. The
straight branches represent uncertainty resolution, with the two nodes in the dashed rectangle being in the same in-
formation set. The letter on a straight branch represents its probability. The elbow branches are choice options. The
orange branches are the optimal choices, which induce a lottery.

ments—A wins if and only if D loses. Same as in the D-Info treatment, participants should choose

D if the information says it wins and choose A otherwise. This strategy leads to a lottery depicted

in Figure A3. The total winning chance of following this strategy is d+ 1− d′, which implies that

the information value should be 1 − d′. Note that this expression does not involve any reduction

of compound probabilities, which makes it even simpler to calculate than the information value in

the main treatments. I elicit information valuations in 5 scenarios where I vary d and d′: the pairs

(d, d′) used are (60%, 70%), (60%, 80%), (60%, 90%), (50%, 80%) and (70%, 80%).

Figure A4 shows the result of the Inconclusive Info treatment. Average information valuation

is insensitive to d′ (p = 0.177) but sensitive to d (p < 0.001), which is the reverse of the correct

comparative statics. The participants’ inability to evaluate information correctly, even when no

reduction of compound probabilities is needed, suggests that computational complexity, and com-

pound reduction specifically, are not prerequisites for the observed bias. This stark result on the

comparative statics on d implies that people attach lower values to information as the default lot-

tery becomes more likely to win, irrespective of whether it is warranted in the specific setting. This

context-independent decision rule suggests that although the response of information valuations to
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Figure A3: Payoff structure induced by the information in the Inconclusive Info treatment

Notes: This figure depicts the payoff structure induced by the information in the Inconclusive Info treatment. The
straight branches represent uncertainty resolution, with the two nodes in the dashed rectangle being in the same in-
formation set. The letter on a straight branch represents its probability. The elbow branches are choice options. The
orange branches are the optimal choices, which induce a lottery.

the default lottery seems rational in the main treatments, it actually reflects the use of heuristics.

Figure A4 shows the result of the Inconclusive Info treatment. Average information valuation

is insensitive to d′ (p = 0.177) but sensitive to d (p < 0.001), which is the reverse of the correct

comparative statics. The fact that participants do not correctly evaluate information even when

no reduction of compound probabilities is required indicates that compound reduction and, more

generally, computational complexity are not necessary for the bias. This stark result on the com-

parative statics on d implies that people attach lower values to information as the default lottery

becomes more likely to win, irrespective of whether it is warranted in the specific setting. This

context-independent decision rule suggests that although the response of information valuations to

the default lottery seems rational in the main treatments, it actually reflects the use of heuristics.

A.3 Evaluating information with zero value

Section 3.2 establishes that one of the challenges in evaluating information stems from the

necessity to integrate multiple payoffs. An implication of this finding is that if the information
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Figure A4: Information valuations in the Inconclusive Info treatment

Notes: This figure shows the average information valuations in the Inconclusive Info treatment. Each dot represents a
scenario, with the tag next to it showing the d of that scenario. Error bars represent 95% confidence intervals.

does not alter the choice, its evaluation should be easier, as there’s no need for payoff integration

to understand that such information carries no value. In this section, I report on the D-Info (a = 0

first) treatment (N = 78) and the A-Info (a = 0 first) treatment (N = 72). These two treatments

are the same as the original D-Info and A-Info treatments except that they have one additional

scenario at the beginning where d = 60% and a = 0%. This additional scenario allows me to

investigate whether information with zero value is indeed easier to evaluate.

Figures A5 and A6 show the results of these two treatments. Consistent with the hypothesis,

the average information valuation when a = 0 is lower than when a = 10% (D-Info: p = 0.030; A-

Info: p = 0.017), contrasting with the insensitivity to a observed in the original D-Info and A-Info

treatments. However, the average valuations are still far from the correct value of zero. This is also

reflected at the individual level: only 19.2% of participants in the D-Info (a = 0 first) treatment

and 37.5% in the A-Info (a = 0 first) treatment correctly evaluate the valueless information at

zero. These findings suggest that while payoff integration is an important source of complexity for
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Figure A5: Information valuations in the D-Info (a = 0 first) treatment

Notes: This figure shows the average information valuations in the D-Info (a = 0 first) treatment. Each dot represents
a scenario, with the tag next to it showing the d and a of that scenario. Error bars represent 95% confidence intervals.
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Figure A6: Information valuations in the A-Info (a = 0 first) treatment

Notes: This figure shows the average information valuations in the A-Info (a = 0 first) treatment. Each dot represents
a scenario, with the tag next to it showing the d and a of that scenario. Error bars represent 95% confidence intervals.
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information valuation, it is not the only one.

A.4 Advisee treatment

In this section, I report on the design and results of the Advisee treatment (N = 51). This

treatment is identical to the D-Info treatment except that participants evaluate advice provided by

previous participants after going through the instructions, but prior to encountering the scenarios.

Specifically, each participant in the Advisee treatment reviews two pieces of advice written by par-

ticipants from earlier treatments. One piece of advice correctly argues that information valuation

should increase in a, whereas the other incorrectly asserts a reverse relationship. Before they begin

to evaluate information across the six scenarios, participants indicate which piece of advice they

find more persuasive or if they deem them equally convincing. The participants in the Advisee

treatment are not asked to offer advice.

The number of participants identifying the correct advice as more convincing (19) is signifi-

cantly larger (Pearson’s χ2 test, p = 0.059) than those misidentifying (9). This outcome implies

that, on average, participants possess some capacity to discern the correct relationship between

information valuation and the alternative lottery once the arguments have been laid out for them.

However, this ability does not translate to any significant improvement in the sensitivity of average

information valuation to a (see Figure A7 and Table A5). At the participant level, 31.4% of partic-

ipants exhibit information valuations that increase monotonically with a. This percentage exceeds

the 20.4% in the D-Info treatment. Nevertheless, this difference is solely driven by participants

who rate the two pieces of advice as equally convincing. Among these participants, 43.5% display

this correct comparative statics, whereas only 21% and 22.2% of those favoring the correct and in-

correct advice, respectively, exhibit the same. Taken together, these results indicate that exposure

to the advice of others has a limited effect on information valuations.
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Figure A7: Information valuations in the Advisee treatment

Notes: This figure shows the average information valuations in the Advisee treatment. Each dot represents a scenario,
with the tag next to it showing the d and a of that scenario. Error bars represent 95% confidence intervals.
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B Additional tables

Table A1: Summary statistics of socio-demographics

Mean Std. N

Age 40.19 13.66 1050

1 if female 0.49 0.50 1050

1 if employed 0.70 0.46 1050

1 if college degree 0.56 0.50 1050

1 if income > 75k 0.34 0.48 1050

1 if investing in stock 0.64 0.48 1050

Info Seeking (1-5) 3.92 0.89 980

Risk Seeking (1-5) 3.12 1.03 1050

Planning (1-5) 3.77 0.92 1050

Notes: This tables summarizes the socio-demographic questionnaire at the end of the experiment. The question on the
tendency to seek information before making decision is missing from the WTP treatment.
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Table A2: Sensitivity to d and a in the D-Info treatment

Information Valuation

(1) (2) (3) (4) (5) (6)

d -0.352∗∗∗ -0.378∗∗∗ -0.404∗∗∗

(0.018) (0.024) (0.113)

a -0.033∗ -0.035 0.087

(0.020) (0.028) (0.149)

Control No No No No Yes Yes

Selected sample No No Yes Yes No No

Observations 441 441 225 225 441 441

R2 0.347 0.003 0.388 0.004 0.376 0.067

Notes: This table shows the sensitivity of information valuation to the two lotteries’ winning chances, d and a, in
the D-Info treatment. Regressions (1), (3) and (5) include observations from the three scenarios where d is 50%,
70% and 90%. Regressions (2), (4) and (6) include observations from the three scenarios where a is 10%, 30% and
50%. Control variables include the order of the scenario and all variables in the endline questionnaire, as well as their
interactions with the main independent variable (d or a). The selected sample only includes participants who correctly
answer all comprehension questions in one attempt, choose the optimal lottery given all available information, and
spend on average 8 seconds or more on each scenario. Standard errors are clustered by participant. *, **, and ***
indicate statistical significance at the 0.10, 0.05, and 0.01 levels, respectively.

37



Table A3: Comparative statics of information valuation at the participant level

% of participants with Treatment

information valuation . . . D-Info A-Info WTP Strategy D-Insured A-Insured
D-Info

(a = 0 first)

A-Info

(a = 0 first)
Advisee

decreasing in d (correct) 66 75.7 48.6 72.6 72.5 58.3 74.4 66.7 56.9

constant in d 4.1 1.3 18.6 1.4 2.1 1.3 2.6 5.6 0

increasing in d 0.7 0.7 11.4 0 1.4 1.3 3.9 0 0

increasing in a (correct) 20.4 20.4 31.4 30.1 40.9 19.2 21.8 34.7 31.4

constant in a 19.1 13.8 25.7 19.6 9.2 13.5 14.1 13.9 13.7

decreasing in a 27.9 27 15.7 20.2 19 34.6 33.3 22.2 23.5

Notes: This tables summarizes the responses of information demand to the default option and the alternative option at
the participant level. Responses to d are classified using the three scenarios where d is 50%, 70% and 90%. Responses
to a are classified using the three scenarios where a is 10%, 30% and 50%. Responses are classified as increasing
(decreasing) if they are weakly increasing (decreasing) but not constant everywhere.

Table A4: Comparative statics of information valuation mentioned in advice

% of participants who write that Treatment

information valuation should . . . D-Info A-Info WTP Strategy D-Insured A-Insured
D-Info

(a = 0 first)

A-Info

(a = 0 first)

decrease in d (correct) 25.9 27.0 47.1 24.7 29.6 9.6 29.5 19.4

respond to d (no direction) 26.5 26.3 12.9 31.5 27.5 40.4 25.6 29.2

increase in d 12.2 7.9 10.0 4.1 6.3 21.2 14.1 4.2

increase in a (correct) 10.9 19.7 12.9 6.9 29.6 7.7 11.5 26.4

respond to a (no direction) 21.8 25.0 11.4 24.7 38.0 31.4 21.8 20.8

decrease in a 12.9 18.4 17.1 13.7 0 16.0 21.8 9.7

Notes: This tables summarizes the comparative statics of information demand mentioned in the incentivized advice.
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Table A5: Sensitivity to a across treatments

Information Valuation

(1) (2) (3) (4)

a -0.033∗ -0.035 -0.053 -0.154∗

(0.020) (0.027) (0.057) (0.081)

A-Info × a 0.013 0.034 0.008 0.024

(0.029) (0.038) (0.028) (0.037)

WTP × a 0.068∗∗∗ 0.080∗∗ 0.072∗∗∗ 0.073∗

(0.026) (0.034) (0.027) (0.038)

Strategy × a 0.076∗∗ 0.110∗∗ 0.073∗∗ 0.112∗∗

(0.035) (0.046) (0.035) (0.046)

D-Insured × a 0.117∗∗∗ 0.199∗∗∗ 0.120∗∗∗ 0.207∗∗∗

(0.031) (0.044) (0.031) (0.044)

A-Insured × a -0.015 0.044 -0.012 0.040

(0.029) (0.047) (0.029) (0.047)

D-Info (a = 0 first) × a -0.032 -0.036 -0.034 -0.040

(0.034) (0.045) (0.035) (0.046)

A-Info (a = 0 first) × a 0.084∗∗ 0.128∗∗ 0.079∗∗ 0.122∗

(0.039) (0.064) (0.039) (0.065)

Advisee × a 0.043 0.053 0.062 0.081

(0.042) (0.056) (0.042) (0.055)

Participant FE Yes Yes Yes Yes

Control No No Yes Yes

Selected sample No Yes No Yes

Observations 2823 1332 2823 1332

R2 0.707 0.715 0.713 0.723

Notes: This table compares the sensitivity of information valuations to Lottery A’s winning chance a across nine
treatments: D-Info, A-Info, WTP, Strategy-method, D-Insured, A-Insured, D-Info (a = 0 first), A-Info (a = 0 first),
and Advisee. The data include observations from the three scenarios where a is 10%, 30% and 50%. Control variables
include the order of the scenario and its interaction with a, as well as a’s interactions with all variables in the endline
questionnaire (except the question about the willingness to acquire information before making decisions, which I
forgot to include in the WTP treatment). The selected sample only includes participants who correctly answer all
comprehension questions in one attempt, choose the optimal lottery given all available information, and spend on
average 8 seconds or more on each scenario. Standard errors are clustered by participant. *, **, and *** indicate
statistical significance at the 0.10, 0.05, and 0.01 levels, respectively.
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Table A6: Sensitivity to d across treatments

Information Valuation

(1) (2) (3) (4)

d -0.352∗∗∗ -0.378∗∗∗ -0.318∗∗∗ -0.260∗∗∗

(0.018) (0.024) (0.047) (0.063)

A-Info × d -0.005 0.003 -0.009 0.002

(0.024) (0.032) (0.024) (0.031)

WTP × d 0.278∗∗∗ 0.265∗∗∗ 0.277∗∗∗ 0.271∗∗∗

(0.029) (0.039) (0.029) (0.040)

Strategy × d -0.002 0.025 -0.003 0.024

(0.026) (0.034) (0.026) (0.035)

D-Insured × d -0.013 0.012 -0.017 0.007

(0.025) (0.035) (0.025) (0.035)

A-Insured × d 0.027 0.007 0.023 0.008

(0.024) (0.035) (0.025) (0.036)

D-Info (a = 0 first) × d 0.003 -0.015 0.008 -0.013

(0.032) (0.041) (0.032) (0.040)

A-Info (a = 0 first) × d -0.009 0.009 -0.005 0.019

(0.031) (0.046) (0.032) (0.046)

Advisee × d 0.037 0.021 0.029 0.017

(0.037) (0.051) (0.037) (0.050)

Participant FE Yes Yes Yes Yes

Control No No Yes Yes

Selected sample No Yes No Yes

Observations 2823 1332 2823 1332

R2 0.716 0.749 0.717 0.753

Notes: This table compares the sensitivity of information valuation to Lottery D’s winning chance d across nine
treatments: D-Info, A-Info, WTP, Strategy-method, D-Insured, A-Insured, D-Info (a = 0 first), A-Info (a = 0 first),
and Advisee. The data include observations from the three scenarios where d is 50%, 70% and 90%. Control variables
include the order of the scenario and its interaction with d, as well as d’s interactions with all variables in the endline
questionnaire (except the question about the willingness to acquire information before making decisions, which I
forgot to include in the WTP treatment). The selected sample only includes participants who correctly answer all
comprehension questions in one attempt, choose the optimal lottery given all available information, and spend on
average 8 seconds or more on each scenario. Standard errors are clustered by participant. *, **, and *** indicate
statistical significance at the 0.10, 0.05, and 0.01 levels, respectively.40


	Introduction
	Evidence on information demand
	Experimental design
	Rational benchmark
	Results
	A-Info treatment

	What makes information valuation difficult?
	Imperfect foresight
	Payoff integration
	Computational complexity
	Multiple choices


	Discussion
	Additional treatments
	WTP treatment
	Inconclusive Info treatment
	Evaluating information with zero value
	Advisee treatment

	Additional tables

